不可压缩粘弹性流体动力学的Kelvin-voigt脉冲方程

IF 0.5 4区 工程技术 Q4 MECHANICS
S.N. Antontsev, I.V. Kuznetsov, S.A. Sazhenkov
{"title":"不可压缩粘弹性流体动力学的Kelvin-voigt脉冲方程","authors":"S.N. Antontsev,&nbsp;I.V. Kuznetsov,&nbsp;S.A. Sazhenkov","doi":"10.1134/S0021894424050031","DOIUrl":null,"url":null,"abstract":"<p>This paper describes a multidimensional initial-boundary-value problem for Kelvin–Voigt equations for a viscoelastic fluid with a nonlinear convective term and a linear impulsive term, which is a regular junior term describing impulsive phenomena. The impulsive term depends on an integer positive parameter <span>\\(n\\)</span>, and, as <span>\\(n\\to+\\infty\\)</span>, weakly converges to an expression that includes the Dirac delta function that simulates impulsive phenomena at the initial time. It is proven that, as <span>\\(n\\to+\\infty\\)</span>, an infinitesimal initial layer associated with the Dirac delta function is formed and the family of regular weak solutions of the initial-boundary-value problem converges to a strong solution of a two-scale micro- and macroscopic model.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 5","pages":"815 - 828"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KELVIN–VOIGT IMPULSIVE EQUATIONS OF INCOMPRESSIBLE VISCOELASTIC FLUID DYNAMICS\",\"authors\":\"S.N. Antontsev,&nbsp;I.V. Kuznetsov,&nbsp;S.A. Sazhenkov\",\"doi\":\"10.1134/S0021894424050031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes a multidimensional initial-boundary-value problem for Kelvin–Voigt equations for a viscoelastic fluid with a nonlinear convective term and a linear impulsive term, which is a regular junior term describing impulsive phenomena. The impulsive term depends on an integer positive parameter <span>\\\\(n\\\\)</span>, and, as <span>\\\\(n\\\\to+\\\\infty\\\\)</span>, weakly converges to an expression that includes the Dirac delta function that simulates impulsive phenomena at the initial time. It is proven that, as <span>\\\\(n\\\\to+\\\\infty\\\\)</span>, an infinitesimal initial layer associated with the Dirac delta function is formed and the family of regular weak solutions of the initial-boundary-value problem converges to a strong solution of a two-scale micro- and macroscopic model.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"65 5\",\"pages\":\"815 - 828\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894424050031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424050031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了粘弹性流体 Kelvin-Voigt 方程的多维初始边界值问题,该方程具有非线性对流项和线性脉冲项,后者是描述脉冲现象的正则初级项。脉冲项取决于一个整数正参数 (n\),当 (n\to+\infty\)时,脉冲项弱收敛于一个表达式,该表达式包括模拟初始时脉冲现象的狄拉克三角函数。事实证明,随着 \(n\to+\infty\),会形成一个与狄拉克-德尔塔函数相关的无限小初始层,初始边界值问题的正则弱解系列会收敛到一个双尺度微观和宏观模型的强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KELVIN–VOIGT IMPULSIVE EQUATIONS OF INCOMPRESSIBLE VISCOELASTIC FLUID DYNAMICS

This paper describes a multidimensional initial-boundary-value problem for Kelvin–Voigt equations for a viscoelastic fluid with a nonlinear convective term and a linear impulsive term, which is a regular junior term describing impulsive phenomena. The impulsive term depends on an integer positive parameter \(n\), and, as \(n\to+\infty\), weakly converges to an expression that includes the Dirac delta function that simulates impulsive phenomena at the initial time. It is proven that, as \(n\to+\infty\), an infinitesimal initial layer associated with the Dirac delta function is formed and the family of regular weak solutions of the initial-boundary-value problem converges to a strong solution of a two-scale micro- and macroscopic model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信