变黏度和扩散系数物质对流平稳模型的混合边值问题分析

IF 0.5 4区 工程技术 Q4 MECHANICS
G.V. Alekseev, Yu.E. Spivak
{"title":"变黏度和扩散系数物质对流平稳模型的混合边值问题分析","authors":"G.V. Alekseev,&nbsp;Yu.E. Spivak","doi":"10.1134/S0021894424050018","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a boundary value problem for a nonlinear mass transfer model that generalizes the classical Boussinesq approximation under inhomogeneous Dirichlet boundary conditions for velocity and mixed boundary conditions for the substance concentration. It is assumed that the viscosity and diffusion coefficients and the buoyancy force in the model equations depend on the concentration. A mathematical apparatus for studying the problem is developed and used to prove the theorem on the global existence of a weak solution. Sufficient conditions for the problem under study that ensure the local uniqueness of weak solutions are given.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 5","pages":"793 - 801"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF A MIXED BOUNDARY VALUE PROBLEM FOR A STATIONARY MODEL OF SUBSTANCE CONVECTION WITH VARIABLE VISCOSITY AND DIFFUSION COEFFICIENTS\",\"authors\":\"G.V. Alekseev,&nbsp;Yu.E. Spivak\",\"doi\":\"10.1134/S0021894424050018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a boundary value problem for a nonlinear mass transfer model that generalizes the classical Boussinesq approximation under inhomogeneous Dirichlet boundary conditions for velocity and mixed boundary conditions for the substance concentration. It is assumed that the viscosity and diffusion coefficients and the buoyancy force in the model equations depend on the concentration. A mathematical apparatus for studying the problem is developed and used to prove the theorem on the global existence of a weak solution. Sufficient conditions for the problem under study that ensure the local uniqueness of weak solutions are given.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"65 5\",\"pages\":\"793 - 801\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894424050018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424050018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一个非线性传质模型的边界值问题,该模型在速度的非均质 Dirichlet 边界条件和物质浓度的混合边界条件下对经典的 Boussinesq 近似进行了概括。假定模型方程中的粘度和扩散系数以及浮力取决于浓度。建立了研究该问题的数学装置,并用于证明弱解全局存在定理。给出了所研究问题确保弱解局部唯一性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF A MIXED BOUNDARY VALUE PROBLEM FOR A STATIONARY MODEL OF SUBSTANCE CONVECTION WITH VARIABLE VISCOSITY AND DIFFUSION COEFFICIENTS

In this paper, we consider a boundary value problem for a nonlinear mass transfer model that generalizes the classical Boussinesq approximation under inhomogeneous Dirichlet boundary conditions for velocity and mixed boundary conditions for the substance concentration. It is assumed that the viscosity and diffusion coefficients and the buoyancy force in the model equations depend on the concentration. A mathematical apparatus for studying the problem is developed and used to prove the theorem on the global existence of a weak solution. Sufficient conditions for the problem under study that ensure the local uniqueness of weak solutions are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信