热通量采用科尔曼-古尔丁定律的热弹性层叠梁的一般稳定性结果

IF 0.9 Q2 MATHEMATICS
Adel M. Al-Mahdi
{"title":"热通量采用科尔曼-古尔丁定律的热弹性层叠梁的一般稳定性结果","authors":"Adel M. Al-Mahdi","doi":"10.1007/s13370-025-01304-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a thermoelastic laminated beam where the heat flux is given by the Coleman-Gurtin’s law. That is </p><div><div><span>$$\\begin{aligned} \\tau q(t)+(1-\\alpha )\\theta _{x}+\\alpha \\int _{0}^{\\infty } \\Psi (s)\\theta _{x}(x, t-s)ds=0,\\qquad \\alpha \\in (0, 1), \\end{aligned}$$</span></div></div><p>where <span>\\(\\theta \\)</span> is the temperature supposed to be known for negative times. <span>\\(\\Psi \\)</span> is the convolution thermal kernel, nonnegative bounded, and convex summable function on <span>\\([0, \\infty )\\)</span> and belongs to a wide class of relaxation function satisfies the unitary total mass and some additional properties that will be specified in the paper. By using the well-known Dafermos history framework and constructing a suitable Lyapunov functional, we establish general decay results for which the exponential and polynomial decay rates are special cases, depending on some assumptions on the relaxation function and the wave speeds of the system. The result obtained is new and substantially improves earlier results in the literature.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General stability result of a thermoelastic laminated beam with Coleman-Gurtin law for the heat flux\",\"authors\":\"Adel M. Al-Mahdi\",\"doi\":\"10.1007/s13370-025-01304-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a thermoelastic laminated beam where the heat flux is given by the Coleman-Gurtin’s law. That is </p><div><div><span>$$\\\\begin{aligned} \\\\tau q(t)+(1-\\\\alpha )\\\\theta _{x}+\\\\alpha \\\\int _{0}^{\\\\infty } \\\\Psi (s)\\\\theta _{x}(x, t-s)ds=0,\\\\qquad \\\\alpha \\\\in (0, 1), \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\theta \\\\)</span> is the temperature supposed to be known for negative times. <span>\\\\(\\\\Psi \\\\)</span> is the convolution thermal kernel, nonnegative bounded, and convex summable function on <span>\\\\([0, \\\\infty )\\\\)</span> and belongs to a wide class of relaxation function satisfies the unitary total mass and some additional properties that will be specified in the paper. By using the well-known Dafermos history framework and constructing a suitable Lyapunov functional, we establish general decay results for which the exponential and polynomial decay rates are special cases, depending on some assumptions on the relaxation function and the wave speeds of the system. The result obtained is new and substantially improves earlier results in the literature.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01304-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01304-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是热弹性层叠梁,其中的热通量由 Coleman-Gurtin 定律给出。即 $$\begin{aligned}\tau q(t)+(1-\alpha )\theta _{x}+\alpha \int _{0}^{infty }\Psi (s)\theta _{x}(x, t-s)ds=0,\qquad \alpha \in (0, 1), \end{aligned}$ 其中 \(\theta \)是已知负时间的温度。\(\Psi \)是卷积热核,非负有界,是\([0, \infty )\)上的凸可求和函数,属于满足单元总质量和一些本文将具体说明的附加性质的宽松函数。通过使用著名的 Dafermos 历史框架和构造合适的 Lyapunov 函数,我们建立了一般衰变结果,其中指数衰变率和多项式衰变率是特例,取决于对松弛函数和系统波速的一些假设。所获得的结果是全新的,大大改进了文献中的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General stability result of a thermoelastic laminated beam with Coleman-Gurtin law for the heat flux

We consider a thermoelastic laminated beam where the heat flux is given by the Coleman-Gurtin’s law. That is

$$\begin{aligned} \tau q(t)+(1-\alpha )\theta _{x}+\alpha \int _{0}^{\infty } \Psi (s)\theta _{x}(x, t-s)ds=0,\qquad \alpha \in (0, 1), \end{aligned}$$

where \(\theta \) is the temperature supposed to be known for negative times. \(\Psi \) is the convolution thermal kernel, nonnegative bounded, and convex summable function on \([0, \infty )\) and belongs to a wide class of relaxation function satisfies the unitary total mass and some additional properties that will be specified in the paper. By using the well-known Dafermos history framework and constructing a suitable Lyapunov functional, we establish general decay results for which the exponential and polynomial decay rates are special cases, depending on some assumptions on the relaxation function and the wave speeds of the system. The result obtained is new and substantially improves earlier results in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信