LRDP:一个R包,实现了正交矩阵的一类新的分解

IF 0.9 Q2 MATHEMATICS
Luca Bagnato, Antonio Punzo
{"title":"LRDP:一个R包,实现了正交矩阵的一类新的分解","authors":"Luca Bagnato,&nbsp;Antonio Punzo","doi":"10.1007/s13370-025-01283-z","DOIUrl":null,"url":null,"abstract":"<div><p>Decompositions of an orthogonal matrix <span>\\(\\varvec{Q}\\)</span> are valuable on their own and play a crucial role in statistics by simplifying the often challenging estimation of <span>\\(\\varvec{Q}\\)</span> when it is part of a model or method. It’s important to note that, in some cases, any orthogonal matrix generated by permuting and/or flipping the signs of the columns of <span>\\(\\varvec{Q}\\)</span> is sufficient; principal component analysis (PCA) is one such example. With this in mind, we propose a decomposition of <span>\\(\\varvec{Q}\\)</span>, called LRDP, which allows control over the order and the sign of the columns. Due to its structure, our proposal enables the definition of simplified decompositions that can reproduce <span>\\(\\varvec{Q}\\)</span> up to a permutation of the columns (LRD decomposition), up to a sign flip of the columns (LRP decomposition), or up to both (LR decomposition). Additionally, we introduce <b>LRDP</b>, an <span>R</span> package provided as supplementary material, specifically designed to implement our decomposition. We illustrate its functionality using a benchmark dataset from the PCA literature.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01283-z.pdf","citationCount":"0","resultStr":"{\"title\":\"LRDP: an R package implementing a new class of decompositions for orthogonal matrices\",\"authors\":\"Luca Bagnato,&nbsp;Antonio Punzo\",\"doi\":\"10.1007/s13370-025-01283-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decompositions of an orthogonal matrix <span>\\\\(\\\\varvec{Q}\\\\)</span> are valuable on their own and play a crucial role in statistics by simplifying the often challenging estimation of <span>\\\\(\\\\varvec{Q}\\\\)</span> when it is part of a model or method. It’s important to note that, in some cases, any orthogonal matrix generated by permuting and/or flipping the signs of the columns of <span>\\\\(\\\\varvec{Q}\\\\)</span> is sufficient; principal component analysis (PCA) is one such example. With this in mind, we propose a decomposition of <span>\\\\(\\\\varvec{Q}\\\\)</span>, called LRDP, which allows control over the order and the sign of the columns. Due to its structure, our proposal enables the definition of simplified decompositions that can reproduce <span>\\\\(\\\\varvec{Q}\\\\)</span> up to a permutation of the columns (LRD decomposition), up to a sign flip of the columns (LRP decomposition), or up to both (LR decomposition). Additionally, we introduce <b>LRDP</b>, an <span>R</span> package provided as supplementary material, specifically designed to implement our decomposition. We illustrate its functionality using a benchmark dataset from the PCA literature.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01283-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01283-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01283-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

正交矩阵\(\varvec{Q}\)的分解本身就很有价值,并且在统计学中发挥着至关重要的作用,它简化了模型或方法中对\(\varvec{Q}\)的通常具有挑战性的估计。值得注意的是,在某些情况下,通过置换和/或翻转\(\varvec{Q}\)列的符号生成的任何正交矩阵都是充分的;主成分分析(PCA)就是这样一个例子。考虑到这一点,我们提出了\(\varvec{Q}\)的分解,称为LRDP,它允许控制列的顺序和符号。由于其结构,我们的建议允许定义简化分解,可以复制\(\varvec{Q}\)到列的排列(LRD分解),到列的符号翻转(LRP分解),或者到两者(LR分解)。此外,我们还介绍了LRDP,这是一个作为补充材料提供的R包,专门用于实现我们的分解。我们使用PCA文献中的基准数据集来说明其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LRDP: an R package implementing a new class of decompositions for orthogonal matrices

Decompositions of an orthogonal matrix \(\varvec{Q}\) are valuable on their own and play a crucial role in statistics by simplifying the often challenging estimation of \(\varvec{Q}\) when it is part of a model or method. It’s important to note that, in some cases, any orthogonal matrix generated by permuting and/or flipping the signs of the columns of \(\varvec{Q}\) is sufficient; principal component analysis (PCA) is one such example. With this in mind, we propose a decomposition of \(\varvec{Q}\), called LRDP, which allows control over the order and the sign of the columns. Due to its structure, our proposal enables the definition of simplified decompositions that can reproduce \(\varvec{Q}\) up to a permutation of the columns (LRD decomposition), up to a sign flip of the columns (LRP decomposition), or up to both (LR decomposition). Additionally, we introduce LRDP, an R package provided as supplementary material, specifically designed to implement our decomposition. We illustrate its functionality using a benchmark dataset from the PCA literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信