通过信用估计的相关矩阵近似来评估贷款资格

IF 0.9 Q2 MATHEMATICS
Hajar A. Alshaikh, Suliman S. Al-Homidan
{"title":"通过信用估计的相关矩阵近似来评估贷款资格","authors":"Hajar A. Alshaikh,&nbsp;Suliman S. Al-Homidan","doi":"10.1007/s13370-025-01303-y","DOIUrl":null,"url":null,"abstract":"<div><p>The correlation problem is a central focus in statistical analysis and data science, as it aims to quantify the relationships between variables. This paper explores efficient methods for approximating correlation matrices to assess loan eligibility for bank customers. We propose a novel algorithm that utilizes advanced optimization techniques to minimize the difference between actual noisy matrices and approximated correlation matrices. The algorithm is designed for large-scale correlation matrices, such as those with thousands of variables, and employs the interior point primal-dual path-following method. We provide a comprehensive comparative analysis of our methods and the commonly used modified alternating projection method, evaluating their efficacy and computational efficiency based on numerical results.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing loan eligibility through correlation matrix approximation for credit estimation\",\"authors\":\"Hajar A. Alshaikh,&nbsp;Suliman S. Al-Homidan\",\"doi\":\"10.1007/s13370-025-01303-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The correlation problem is a central focus in statistical analysis and data science, as it aims to quantify the relationships between variables. This paper explores efficient methods for approximating correlation matrices to assess loan eligibility for bank customers. We propose a novel algorithm that utilizes advanced optimization techniques to minimize the difference between actual noisy matrices and approximated correlation matrices. The algorithm is designed for large-scale correlation matrices, such as those with thousands of variables, and employs the interior point primal-dual path-following method. We provide a comprehensive comparative analysis of our methods and the commonly used modified alternating projection method, evaluating their efficacy and computational efficiency based on numerical results.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01303-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01303-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

相关性问题是统计分析和数据科学的中心焦点,因为它旨在量化变量之间的关系。本文探讨了近似相关矩阵来评估银行客户贷款资格的有效方法。我们提出了一种新的算法,利用先进的优化技术来最小化实际噪声矩阵和近似相关矩阵之间的差异。该算法针对数千个变量的大规模相关矩阵设计,采用内点原对偶路径跟踪方法。我们对我们的方法和常用的改进交替投影法进行了全面的比较分析,并基于数值结果评价了它们的有效性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing loan eligibility through correlation matrix approximation for credit estimation

Assessing loan eligibility through correlation matrix approximation for credit estimation

The correlation problem is a central focus in statistical analysis and data science, as it aims to quantify the relationships between variables. This paper explores efficient methods for approximating correlation matrices to assess loan eligibility for bank customers. We propose a novel algorithm that utilizes advanced optimization techniques to minimize the difference between actual noisy matrices and approximated correlation matrices. The algorithm is designed for large-scale correlation matrices, such as those with thousands of variables, and employs the interior point primal-dual path-following method. We provide a comprehensive comparative analysis of our methods and the commonly used modified alternating projection method, evaluating their efficacy and computational efficiency based on numerical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信