João Carlos da Motta Ferreira, Maria das Graças Bruno Marietto
{"title":"\\(*\\) -代数上三重积和上的\\(*\\) -导型映射","authors":"João Carlos da Motta Ferreira, Maria das Graças Bruno Marietto","doi":"10.1007/s13370-025-01299-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {M}\\)</span> be a unital prime complex <span>\\(*\\)</span>-algebra having a non-trivial projection. In this paper, we proved that every <span>\\(*\\)</span>-derivation-type map <span>\\(\\Phi :\\mathcal {M}\\rightarrow \\mathcal {M}\\)</span> on sum of triple products <span>\\(\\alpha _{1} abc+\\alpha _{2} a^{*}cb^{*}+\\alpha _{3} bac +\\alpha _{4} ca^{*}b^{*}+\\alpha _{5} bca+\\alpha _{6} cb^{*}a^{*},\\)</span> where the scalars <span>\\(\\{\\alpha _{k}\\}_{k=1}^{6}\\)</span> are rational numbers satisfying some conditions, is an additive <span>\\(*\\)</span>-derivation. An application of the main result is also presented.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maps of \\\\(*\\\\)-derivation-type on sums of triple products on \\\\(*\\\\)-algebras\",\"authors\":\"João Carlos da Motta Ferreira, Maria das Graças Bruno Marietto\",\"doi\":\"10.1007/s13370-025-01299-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {M}\\\\)</span> be a unital prime complex <span>\\\\(*\\\\)</span>-algebra having a non-trivial projection. In this paper, we proved that every <span>\\\\(*\\\\)</span>-derivation-type map <span>\\\\(\\\\Phi :\\\\mathcal {M}\\\\rightarrow \\\\mathcal {M}\\\\)</span> on sum of triple products <span>\\\\(\\\\alpha _{1} abc+\\\\alpha _{2} a^{*}cb^{*}+\\\\alpha _{3} bac +\\\\alpha _{4} ca^{*}b^{*}+\\\\alpha _{5} bca+\\\\alpha _{6} cb^{*}a^{*},\\\\)</span> where the scalars <span>\\\\(\\\\{\\\\alpha _{k}\\\\}_{k=1}^{6}\\\\)</span> are rational numbers satisfying some conditions, is an additive <span>\\\\(*\\\\)</span>-derivation. An application of the main result is also presented.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01299-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01299-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Maps of \(*\)-derivation-type on sums of triple products on \(*\)-algebras
Let \(\mathcal {M}\) be a unital prime complex \(*\)-algebra having a non-trivial projection. In this paper, we proved that every \(*\)-derivation-type map \(\Phi :\mathcal {M}\rightarrow \mathcal {M}\) on sum of triple products \(\alpha _{1} abc+\alpha _{2} a^{*}cb^{*}+\alpha _{3} bac +\alpha _{4} ca^{*}b^{*}+\alpha _{5} bca+\alpha _{6} cb^{*}a^{*},\) where the scalars \(\{\alpha _{k}\}_{k=1}^{6}\) are rational numbers satisfying some conditions, is an additive \(*\)-derivation. An application of the main result is also presented.