基于药物的网格成形转炉控制、建模及稳定性分析*

Q1 Engineering
Wencong Wu;Minzhi Wang;Liang Tu;Haiqing Cai;Guanglei Yan;Xiaohui Qu;Haohan Gu;Wei Chen
{"title":"基于药物的网格成形转炉控制、建模及稳定性分析*","authors":"Wencong Wu;Minzhi Wang;Liang Tu;Haiqing Cai;Guanglei Yan;Xiaohui Qu;Haohan Gu;Wei Chen","doi":"10.23919/CJEE.2025.000100","DOIUrl":null,"url":null,"abstract":"Diode rectifier unit (DRU)-based high-voltage direct current (HVDC) transmission systems are effective in achieving the stable and economical operation of offshore wind-power generation. Considering the uncontrollable characteristics of DRUs, a grid-forming (GFM) strategy for wind-turbine converters is necessary to support offshore AC voltage and frequency. However, the active power-synchronization control in traditional GFM converters is unsuitable for DRU-based GFM converters. Thus, the stability issue for DRU-based HVDC systems involving DRU-based GFM and grid-following (GFL) converters has not yet been addressed. To solve these issues, this study begins with the characteristics of a DRU-based HVDC system and presents a control scheme for DRU-based GFM converters for power synchronization. Subsequently, the dq-frame impedance model of the DRU-based GFM converter is proposed for the stability analysis of the entire HVDC system. Finally, a simulation platform is built to verify the model accuracy and system stability.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"83-92"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955306","citationCount":"0","resultStr":"{\"title\":\"Control, Modeling and Stability Analysis of DRU-based Grid-forming Converter*\",\"authors\":\"Wencong Wu;Minzhi Wang;Liang Tu;Haiqing Cai;Guanglei Yan;Xiaohui Qu;Haohan Gu;Wei Chen\",\"doi\":\"10.23919/CJEE.2025.000100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diode rectifier unit (DRU)-based high-voltage direct current (HVDC) transmission systems are effective in achieving the stable and economical operation of offshore wind-power generation. Considering the uncontrollable characteristics of DRUs, a grid-forming (GFM) strategy for wind-turbine converters is necessary to support offshore AC voltage and frequency. However, the active power-synchronization control in traditional GFM converters is unsuitable for DRU-based GFM converters. Thus, the stability issue for DRU-based HVDC systems involving DRU-based GFM and grid-following (GFL) converters has not yet been addressed. To solve these issues, this study begins with the characteristics of a DRU-based HVDC system and presents a control scheme for DRU-based GFM converters for power synchronization. Subsequently, the dq-frame impedance model of the DRU-based GFM converter is proposed for the stability analysis of the entire HVDC system. Finally, a simulation platform is built to verify the model accuracy and system stability.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":\"11 1\",\"pages\":\"83-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955306\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955306/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10955306/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

基于二极管整流单元(DRU)的高压直流输电系统是实现海上风电稳定经济运行的有效手段。考虑到风力发电机组的不可控特性,风力发电机组变流器必须采用并网策略来支持海上交流电压和频率。然而,传统GFM变换器的有源功率同步控制并不适用于基于药物的GFM变换器。因此,涉及基于药物的GFM和电网跟随(GFL)转换器的基于药物的高压直流系统的稳定性问题尚未得到解决。为了解决这些问题,本研究从基于药品的高压直流系统的特点出发,提出了一种基于药品的GFM变流器的电力同步控制方案。随后,针对整个高压直流系统的稳定性分析,提出了基于dea的GFM变换器的dq-帧阻抗模型。最后建立了仿真平台,验证了模型的准确性和系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control, Modeling and Stability Analysis of DRU-based Grid-forming Converter*
Diode rectifier unit (DRU)-based high-voltage direct current (HVDC) transmission systems are effective in achieving the stable and economical operation of offshore wind-power generation. Considering the uncontrollable characteristics of DRUs, a grid-forming (GFM) strategy for wind-turbine converters is necessary to support offshore AC voltage and frequency. However, the active power-synchronization control in traditional GFM converters is unsuitable for DRU-based GFM converters. Thus, the stability issue for DRU-based HVDC systems involving DRU-based GFM and grid-following (GFL) converters has not yet been addressed. To solve these issues, this study begins with the characteristics of a DRU-based HVDC system and presents a control scheme for DRU-based GFM converters for power synchronization. Subsequently, the dq-frame impedance model of the DRU-based GFM converter is proposed for the stability analysis of the entire HVDC system. Finally, a simulation platform is built to verify the model accuracy and system stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信