{"title":"探索螺旋环异喹啉-哌啶化合物在结核病治疗中的应用:ADMET分析、对接、DFT、MD模拟和MMGBSA分析","authors":"Sri Mounika Bellapukonda , Siva Singothu , Anuradha Singampalli , Rani Bandela , Pardeep Kumar , Venkata Madhavi Yaddanapudi , Vasundhra Bhandari , Srinivas Nanduri , Mohamed Enneiymy , Mohamed F. AlAjm , Ali oubella","doi":"10.1016/j.compbiolchem.2025.108447","DOIUrl":null,"url":null,"abstract":"<div><div>Tuberculosis remains a global health challenge due to drug-resistant strains. MmpL3 inhibitors have emerged as promising anti-tubercular agents, and their clinical development has been hindered by poor microsomal stability. This study computationally designed and screened 40 spirocyclic analogs, and compared them with ICA38 and SQ109. In silico analyses, including docking, MD simulations, and DFT calculations, were conducted to assess their potential as anti-tubercular agents, highlighting promising candidates for further development. Docking studies using Glide software identified C21 (3,4- dichloro derivative) and C20 (5-chloro derivative) as promising candidates, exhibiting binding scores of −9.79 kcal/mol and −9.64 kcal/mol, respectively. Both compounds interacted with the active site residue Asp645 via hydrogen bonding and also formed a hydrophobic interaction. DFT results revealed that C21 displayed the balanced chemical reactivity, characterized by high dipole moment (3.63D), an optimal energy gap (0.18752 eV), softness and hardness (η = 0.09376 eV, σ = 10.666 eV⁻¹), high electron affinity (0.02305 eV), high electronegativity (0.11681 eV) and high ionization potential (0.21057 cV). On the other hand, C20 exhibited similar electronic properties with marginal differences than C21. MD simulations showed C21 and C20's stability (RMSD 2.4 Å and 2.2 Å, RMSF <2.5 Å), indicating improved Arg344-Leu354 stability. Additionally, C21 and C20 maintained Asp645 interactions (91 %, 97 %) and showed strong binding with free energy values (MMGBSA: −72.23, −66.50 kcal/mol). These findings highlight the efficiency of the compounds C21 and C20 with strong binding affinity, favorable stability, and optimal electronic properties, making them promising candidates for further development of next-generation MmpL3 inhibitors.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"118 ","pages":"Article 108447"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring spirocyclic isoquinoline-piperidine compounds in tuberculosis therapy: ADMET profiling, docking, DFT, MD simulations, and MMGBSA analysis\",\"authors\":\"Sri Mounika Bellapukonda , Siva Singothu , Anuradha Singampalli , Rani Bandela , Pardeep Kumar , Venkata Madhavi Yaddanapudi , Vasundhra Bhandari , Srinivas Nanduri , Mohamed Enneiymy , Mohamed F. AlAjm , Ali oubella\",\"doi\":\"10.1016/j.compbiolchem.2025.108447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tuberculosis remains a global health challenge due to drug-resistant strains. MmpL3 inhibitors have emerged as promising anti-tubercular agents, and their clinical development has been hindered by poor microsomal stability. This study computationally designed and screened 40 spirocyclic analogs, and compared them with ICA38 and SQ109. In silico analyses, including docking, MD simulations, and DFT calculations, were conducted to assess their potential as anti-tubercular agents, highlighting promising candidates for further development. Docking studies using Glide software identified C21 (3,4- dichloro derivative) and C20 (5-chloro derivative) as promising candidates, exhibiting binding scores of −9.79 kcal/mol and −9.64 kcal/mol, respectively. Both compounds interacted with the active site residue Asp645 via hydrogen bonding and also formed a hydrophobic interaction. DFT results revealed that C21 displayed the balanced chemical reactivity, characterized by high dipole moment (3.63D), an optimal energy gap (0.18752 eV), softness and hardness (η = 0.09376 eV, σ = 10.666 eV⁻¹), high electron affinity (0.02305 eV), high electronegativity (0.11681 eV) and high ionization potential (0.21057 cV). On the other hand, C20 exhibited similar electronic properties with marginal differences than C21. MD simulations showed C21 and C20's stability (RMSD 2.4 Å and 2.2 Å, RMSF <2.5 Å), indicating improved Arg344-Leu354 stability. Additionally, C21 and C20 maintained Asp645 interactions (91 %, 97 %) and showed strong binding with free energy values (MMGBSA: −72.23, −66.50 kcal/mol). These findings highlight the efficiency of the compounds C21 and C20 with strong binding affinity, favorable stability, and optimal electronic properties, making them promising candidates for further development of next-generation MmpL3 inhibitors.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"118 \",\"pages\":\"Article 108447\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927125001070\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125001070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Exploring spirocyclic isoquinoline-piperidine compounds in tuberculosis therapy: ADMET profiling, docking, DFT, MD simulations, and MMGBSA analysis
Tuberculosis remains a global health challenge due to drug-resistant strains. MmpL3 inhibitors have emerged as promising anti-tubercular agents, and their clinical development has been hindered by poor microsomal stability. This study computationally designed and screened 40 spirocyclic analogs, and compared them with ICA38 and SQ109. In silico analyses, including docking, MD simulations, and DFT calculations, were conducted to assess their potential as anti-tubercular agents, highlighting promising candidates for further development. Docking studies using Glide software identified C21 (3,4- dichloro derivative) and C20 (5-chloro derivative) as promising candidates, exhibiting binding scores of −9.79 kcal/mol and −9.64 kcal/mol, respectively. Both compounds interacted with the active site residue Asp645 via hydrogen bonding and also formed a hydrophobic interaction. DFT results revealed that C21 displayed the balanced chemical reactivity, characterized by high dipole moment (3.63D), an optimal energy gap (0.18752 eV), softness and hardness (η = 0.09376 eV, σ = 10.666 eV⁻¹), high electron affinity (0.02305 eV), high electronegativity (0.11681 eV) and high ionization potential (0.21057 cV). On the other hand, C20 exhibited similar electronic properties with marginal differences than C21. MD simulations showed C21 and C20's stability (RMSD 2.4 Å and 2.2 Å, RMSF <2.5 Å), indicating improved Arg344-Leu354 stability. Additionally, C21 and C20 maintained Asp645 interactions (91 %, 97 %) and showed strong binding with free energy values (MMGBSA: −72.23, −66.50 kcal/mol). These findings highlight the efficiency of the compounds C21 and C20 with strong binding affinity, favorable stability, and optimal electronic properties, making them promising candidates for further development of next-generation MmpL3 inhibitors.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.