具有输入饱和和执行器故障的吸气式高超声速飞行器的神经网络约束控制

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Guan Wang , Honglin Liu , Zhe Dong , Shuaibin An , Kai Liu
{"title":"具有输入饱和和执行器故障的吸气式高超声速飞行器的神经网络约束控制","authors":"Guan Wang ,&nbsp;Honglin Liu ,&nbsp;Zhe Dong ,&nbsp;Shuaibin An ,&nbsp;Kai Liu","doi":"10.1016/j.ast.2025.110190","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a neural prescribed formation-containment control for air-breathing hypersonic vehicles (AHVs) with input saturation and actuator faults. The proposed method employs key functions to achieve flexible prescribed performance for an AHV swarm system by adjusting of a time-varying scaling function. To avoid the inherited fragility problem of prescribed formation-containment control, an auxiliary system is constructed to adjust performance boundaries under input saturation and external disturbances. Additionally, neural networks are integrated into the design of a distributed extended state observer, which manages unavailable flight states, unpredictable faults, and lumped disturbances. Numerical simulations demonstrate the effectiveness and superiority of the proposed AHV formation-containment control strategy.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"162 ","pages":"Article 110190"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural prescribed formation-containment control for air-breathing hypersonic vehicles with input saturation and actuator faults\",\"authors\":\"Guan Wang ,&nbsp;Honglin Liu ,&nbsp;Zhe Dong ,&nbsp;Shuaibin An ,&nbsp;Kai Liu\",\"doi\":\"10.1016/j.ast.2025.110190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a neural prescribed formation-containment control for air-breathing hypersonic vehicles (AHVs) with input saturation and actuator faults. The proposed method employs key functions to achieve flexible prescribed performance for an AHV swarm system by adjusting of a time-varying scaling function. To avoid the inherited fragility problem of prescribed formation-containment control, an auxiliary system is constructed to adjust performance boundaries under input saturation and external disturbances. Additionally, neural networks are integrated into the design of a distributed extended state observer, which manages unavailable flight states, unpredictable faults, and lumped disturbances. Numerical simulations demonstrate the effectiveness and superiority of the proposed AHV formation-containment control strategy.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"162 \",\"pages\":\"Article 110190\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963825002615\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825002615","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

针对吸气式高超声速飞行器存在输入饱和和执行器故障的情况,提出了一种神经网络规定的掩体控制方法。该方法通过调整时变尺度函数,利用关键函数实现AHV群系统灵活的预定性能。为了避免给定储层控制的脆弱性问题,构造了一个辅助系统来调节输入饱和和外部干扰下的性能边界。此外,将神经网络集成到分布式扩展状态观测器的设计中,以管理不可用的飞行状态、不可预测的故障和集总扰动。数值仿真验证了该控制策略的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural prescribed formation-containment control for air-breathing hypersonic vehicles with input saturation and actuator faults
This study proposes a neural prescribed formation-containment control for air-breathing hypersonic vehicles (AHVs) with input saturation and actuator faults. The proposed method employs key functions to achieve flexible prescribed performance for an AHV swarm system by adjusting of a time-varying scaling function. To avoid the inherited fragility problem of prescribed formation-containment control, an auxiliary system is constructed to adjust performance boundaries under input saturation and external disturbances. Additionally, neural networks are integrated into the design of a distributed extended state observer, which manages unavailable flight states, unpredictable faults, and lumped disturbances. Numerical simulations demonstrate the effectiveness and superiority of the proposed AHV formation-containment control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信