Chuang Li , Heshi Wang , Yanhua Wen , Qingyu Shi , Qinyu Wang , Chunhua Hu , Dongchen Wu
{"title":"STVAI:探索可扩展和高效智能视频推理的时空相似性","authors":"Chuang Li , Heshi Wang , Yanhua Wen , Qingyu Shi , Qinyu Wang , Chunhua Hu , Dongchen Wu","doi":"10.1016/j.jpdc.2025.105079","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of video data computation and inference is a cornerstone for the evolution of multimodal artificial intelligence (MAI). The extensive adoption and optimization of CNN-based frameworks have significantly improved the accuracy of video inference, yet they present substantial challenges for real-time and large-scale computational demands. Existing researches primarily utilize the temporal similarity between video frames to reduce redundant computations, but most of them overlooked the spatial similarity within the frames themselves. Hence, we propose STVAI, a scalable and efficient method that leverages both spatial and temporal similarities to accelerate video inference. This approach uses a parallel region merging strategy, which maintains inference accuracy and enhances the sparsity of the computation matrix. Moreover, we have optimized the computation of sparse convolutions by utilizing Tensor Cores, which accelerate dense convolution computations based on the sparsity of the tiles. Experimental results demonstrate that STVAI achieves a stable acceleration of 1.25 times faster than cuDNN implementations, with only a 5% decrease in prediction accuracy. STVAI can achieve accelerations up to 1.53x, surpassing that of existing methods. Our method can be directly applied to various CNN architectures for video inference tasks without the need for retraining the model.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"201 ","pages":"Article 105079"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STVAI: Exploring spatio-temporal similarity for scalable and efficient intelligent video inference\",\"authors\":\"Chuang Li , Heshi Wang , Yanhua Wen , Qingyu Shi , Qinyu Wang , Chunhua Hu , Dongchen Wu\",\"doi\":\"10.1016/j.jpdc.2025.105079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of video data computation and inference is a cornerstone for the evolution of multimodal artificial intelligence (MAI). The extensive adoption and optimization of CNN-based frameworks have significantly improved the accuracy of video inference, yet they present substantial challenges for real-time and large-scale computational demands. Existing researches primarily utilize the temporal similarity between video frames to reduce redundant computations, but most of them overlooked the spatial similarity within the frames themselves. Hence, we propose STVAI, a scalable and efficient method that leverages both spatial and temporal similarities to accelerate video inference. This approach uses a parallel region merging strategy, which maintains inference accuracy and enhances the sparsity of the computation matrix. Moreover, we have optimized the computation of sparse convolutions by utilizing Tensor Cores, which accelerate dense convolution computations based on the sparsity of the tiles. Experimental results demonstrate that STVAI achieves a stable acceleration of 1.25 times faster than cuDNN implementations, with only a 5% decrease in prediction accuracy. STVAI can achieve accelerations up to 1.53x, surpassing that of existing methods. Our method can be directly applied to various CNN architectures for video inference tasks without the need for retraining the model.</div></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"201 \",\"pages\":\"Article 105079\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731525000462\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000462","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
STVAI: Exploring spatio-temporal similarity for scalable and efficient intelligent video inference
The integration of video data computation and inference is a cornerstone for the evolution of multimodal artificial intelligence (MAI). The extensive adoption and optimization of CNN-based frameworks have significantly improved the accuracy of video inference, yet they present substantial challenges for real-time and large-scale computational demands. Existing researches primarily utilize the temporal similarity between video frames to reduce redundant computations, but most of them overlooked the spatial similarity within the frames themselves. Hence, we propose STVAI, a scalable and efficient method that leverages both spatial and temporal similarities to accelerate video inference. This approach uses a parallel region merging strategy, which maintains inference accuracy and enhances the sparsity of the computation matrix. Moreover, we have optimized the computation of sparse convolutions by utilizing Tensor Cores, which accelerate dense convolution computations based on the sparsity of the tiles. Experimental results demonstrate that STVAI achieves a stable acceleration of 1.25 times faster than cuDNN implementations, with only a 5% decrease in prediction accuracy. STVAI can achieve accelerations up to 1.53x, surpassing that of existing methods. Our method can be directly applied to various CNN architectures for video inference tasks without the need for retraining the model.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.