大带隙多层螺旋高温超导电缆弯曲特性研究

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Haosheng Ye, Xuan Zhou, Jie Sheng, Jinshan Yang, Zhijian Jin, Yue Zhao
{"title":"大带隙多层螺旋高温超导电缆弯曲特性研究","authors":"Haosheng Ye,&nbsp;Xuan Zhou,&nbsp;Jie Sheng,&nbsp;Jinshan Yang,&nbsp;Zhijian Jin,&nbsp;Yue Zhao","doi":"10.1016/j.physc.2025.1354691","DOIUrl":null,"url":null,"abstract":"<div><div>Assembling high-temperature superconducting (HTS) tapes into robust cable with spiral geometry is widely adopted to achieve high current-carrying capacity and strong mechanical properties in high-field magnet applications. However, multi-layer structure of spiral HTS cable undermines its bending performance due to complex factors, which have not been comprehensively clarified yet. In this paper, the influence of the tape gap on the bending characteristics of double-layer spiral HTS cable has been investigated through both experimental and numerical methods. and we revealed a distinct mechanism of critical current degradation during bending correlated with large tape gap. Result shows that, the large tape gap, as an unneglectable geometrical irregularity, leads to the increment of the interlayer friction coefficient. Moreover, with the increase of tape gap, additional compressive strain would be imposed on tape, leading to the exacerbation of imbalance of strain distribution. Therefore, cable samples with larger tape gap exhibit inferior bending performance compared to those with smaller tape gap, and this earlier occurrence of critical current degradation during bending process is primarily manifested in the outer layer. Conclusion obtained from this paper is anticipated to assist the understanding of the mechanism of bending performance degradation, as well as the improvement of engineering production for multi-layer spiral HTS cable.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"632 ","pages":"Article 1354691"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending characteristics of multi-layer spiral HTS cable with large tape gap\",\"authors\":\"Haosheng Ye,&nbsp;Xuan Zhou,&nbsp;Jie Sheng,&nbsp;Jinshan Yang,&nbsp;Zhijian Jin,&nbsp;Yue Zhao\",\"doi\":\"10.1016/j.physc.2025.1354691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assembling high-temperature superconducting (HTS) tapes into robust cable with spiral geometry is widely adopted to achieve high current-carrying capacity and strong mechanical properties in high-field magnet applications. However, multi-layer structure of spiral HTS cable undermines its bending performance due to complex factors, which have not been comprehensively clarified yet. In this paper, the influence of the tape gap on the bending characteristics of double-layer spiral HTS cable has been investigated through both experimental and numerical methods. and we revealed a distinct mechanism of critical current degradation during bending correlated with large tape gap. Result shows that, the large tape gap, as an unneglectable geometrical irregularity, leads to the increment of the interlayer friction coefficient. Moreover, with the increase of tape gap, additional compressive strain would be imposed on tape, leading to the exacerbation of imbalance of strain distribution. Therefore, cable samples with larger tape gap exhibit inferior bending performance compared to those with smaller tape gap, and this earlier occurrence of critical current degradation during bending process is primarily manifested in the outer layer. Conclusion obtained from this paper is anticipated to assist the understanding of the mechanism of bending performance degradation, as well as the improvement of engineering production for multi-layer spiral HTS cable.</div></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"632 \",\"pages\":\"Article 1354691\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453425000449\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000449","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

高温超导(HTS)带组装成具有螺旋几何形状的坚固电缆被广泛采用,以实现高载流能力和强机械性能。然而,螺旋高温超导电缆的多层结构由于影响其弯曲性能的因素比较复杂,目前尚未得到全面的研究。本文通过实验和数值方法研究了带隙对双层螺旋高温超导电缆弯曲特性的影响。我们揭示了弯曲过程中与大带隙相关的临界电流退化的独特机制。结果表明,较大的带隙作为一种不可忽视的几何不规则性,导致了层间摩擦系数的增大。此外,随着带隙的增大,会对带施加额外的压应变,导致应变分布的不平衡加剧。因此,带隙较大的电缆样品的弯曲性能不如带隙较小的电缆样品,而弯曲过程中临界电流退化的提前发生主要表现在外层。本文的研究结论将有助于理解多层螺旋高温超导电缆弯曲性能下降的机理,并有助于改进工程生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bending characteristics of multi-layer spiral HTS cable with large tape gap
Assembling high-temperature superconducting (HTS) tapes into robust cable with spiral geometry is widely adopted to achieve high current-carrying capacity and strong mechanical properties in high-field magnet applications. However, multi-layer structure of spiral HTS cable undermines its bending performance due to complex factors, which have not been comprehensively clarified yet. In this paper, the influence of the tape gap on the bending characteristics of double-layer spiral HTS cable has been investigated through both experimental and numerical methods. and we revealed a distinct mechanism of critical current degradation during bending correlated with large tape gap. Result shows that, the large tape gap, as an unneglectable geometrical irregularity, leads to the increment of the interlayer friction coefficient. Moreover, with the increase of tape gap, additional compressive strain would be imposed on tape, leading to the exacerbation of imbalance of strain distribution. Therefore, cable samples with larger tape gap exhibit inferior bending performance compared to those with smaller tape gap, and this earlier occurrence of critical current degradation during bending process is primarily manifested in the outer layer. Conclusion obtained from this paper is anticipated to assist the understanding of the mechanism of bending performance degradation, as well as the improvement of engineering production for multi-layer spiral HTS cable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信