Alessia Distefano , Paolo Corsaro , Nunzio Tuccitto , Francesca Laneri , Olivier Monasson , Elisa Peroni , Giuseppe Grasso
{"title":"内在光致发光水凝胶测量肽-铜结合亲和力","authors":"Alessia Distefano , Paolo Corsaro , Nunzio Tuccitto , Francesca Laneri , Olivier Monasson , Elisa Peroni , Giuseppe Grasso","doi":"10.1016/j.jinorgbio.2025.112914","DOIUrl":null,"url":null,"abstract":"<div><div>NH<sub>2</sub> decorated intrinsically photoluminescent hydrogels (IPH-NH<sub>2</sub>) were functionalized with the addition of various peptides via EDC/NHS coupling method. These peptidic devices bind copper with binding affinities depending on surface functionalization. Particularly, fluorescence analysis of copper titrations, alongside the determination of quenching efficiency and lifetime measurements, allowed to assess binding constants and to elucidate the underlying binding mechanism. Various peptides, having the same copper binding amino acidic residues (GHK) but different chain lengths, were tested and it was found that increasing the distance of the GHK sequence from the IPH-NH<sub>2</sub> surface resulted in a decrease in the binding constant, as well as a reduction in quenching efficiency, whereas the binding mechanism remained unchanged as indicated by lifetime measurements. This method not only provides binding constants for peptides immobilized on biosensor surfaces or pre-fabricated devices without altering their structure, but also contributes to the optimization of biosensor design, tailoring it to its intended application.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"268 ","pages":"Article 112914"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsically photoluminescent hydrogels to measure peptides‑copper binding affinities\",\"authors\":\"Alessia Distefano , Paolo Corsaro , Nunzio Tuccitto , Francesca Laneri , Olivier Monasson , Elisa Peroni , Giuseppe Grasso\",\"doi\":\"10.1016/j.jinorgbio.2025.112914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>NH<sub>2</sub> decorated intrinsically photoluminescent hydrogels (IPH-NH<sub>2</sub>) were functionalized with the addition of various peptides via EDC/NHS coupling method. These peptidic devices bind copper with binding affinities depending on surface functionalization. Particularly, fluorescence analysis of copper titrations, alongside the determination of quenching efficiency and lifetime measurements, allowed to assess binding constants and to elucidate the underlying binding mechanism. Various peptides, having the same copper binding amino acidic residues (GHK) but different chain lengths, were tested and it was found that increasing the distance of the GHK sequence from the IPH-NH<sub>2</sub> surface resulted in a decrease in the binding constant, as well as a reduction in quenching efficiency, whereas the binding mechanism remained unchanged as indicated by lifetime measurements. This method not only provides binding constants for peptides immobilized on biosensor surfaces or pre-fabricated devices without altering their structure, but also contributes to the optimization of biosensor design, tailoring it to its intended application.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"268 \",\"pages\":\"Article 112914\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425000947\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000947","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intrinsically photoluminescent hydrogels to measure peptides‑copper binding affinities
NH2 decorated intrinsically photoluminescent hydrogels (IPH-NH2) were functionalized with the addition of various peptides via EDC/NHS coupling method. These peptidic devices bind copper with binding affinities depending on surface functionalization. Particularly, fluorescence analysis of copper titrations, alongside the determination of quenching efficiency and lifetime measurements, allowed to assess binding constants and to elucidate the underlying binding mechanism. Various peptides, having the same copper binding amino acidic residues (GHK) but different chain lengths, were tested and it was found that increasing the distance of the GHK sequence from the IPH-NH2 surface resulted in a decrease in the binding constant, as well as a reduction in quenching efficiency, whereas the binding mechanism remained unchanged as indicated by lifetime measurements. This method not only provides binding constants for peptides immobilized on biosensor surfaces or pre-fabricated devices without altering their structure, but also contributes to the optimization of biosensor design, tailoring it to its intended application.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.