大型蚤转录图集

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ishaan Dua , Lev Y. Yampolsky
{"title":"大型蚤转录图集","authors":"Ishaan Dua ,&nbsp;Lev Y. Yampolsky","doi":"10.1016/j.cbd.2025.101504","DOIUrl":null,"url":null,"abstract":"<div><div>Transcriptomics studies are more likely to achieve predictive results when they rely on tissue- and cell-specific transcriptional data. Identification of cell types in novel model organisms by their transcriptional profiles is difficult without data on transcriptional differences among major tissues and anatomical features. Here we report the first dataset on tissue- and organ-specific transcriptomics in freshwater plankton crustacean <em>Daphnia magna</em>, reporting markers of embryos, hemocytes, gut, carapace, antennae-2, and head, as well as the remaining carcass. Embryos are the most transcriptionally different from adults' features, with antennae and carapace being the most differentiated among them. We demonstrate that transcriptional markers of embryos vs. adults and of various adult anatomical features can be used to provide validation and functional explanation to published differential expression in response to environmental factors like infection, hypoxia, toxicants, or kairomones; to annotate <em>Daphnia</em> single cell data; and to ask questions about transcriptional diversification within extended gene families.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"55 ","pages":"Article 101504"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptional atlas of Daphnia magna\",\"authors\":\"Ishaan Dua ,&nbsp;Lev Y. Yampolsky\",\"doi\":\"10.1016/j.cbd.2025.101504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transcriptomics studies are more likely to achieve predictive results when they rely on tissue- and cell-specific transcriptional data. Identification of cell types in novel model organisms by their transcriptional profiles is difficult without data on transcriptional differences among major tissues and anatomical features. Here we report the first dataset on tissue- and organ-specific transcriptomics in freshwater plankton crustacean <em>Daphnia magna</em>, reporting markers of embryos, hemocytes, gut, carapace, antennae-2, and head, as well as the remaining carcass. Embryos are the most transcriptionally different from adults' features, with antennae and carapace being the most differentiated among them. We demonstrate that transcriptional markers of embryos vs. adults and of various adult anatomical features can be used to provide validation and functional explanation to published differential expression in response to environmental factors like infection, hypoxia, toxicants, or kairomones; to annotate <em>Daphnia</em> single cell data; and to ask questions about transcriptional diversification within extended gene families.</div></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":\"55 \",\"pages\":\"Article 101504\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X25000929\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000929","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当转录组学研究依赖于组织和细胞特异性转录数据时,它们更有可能获得预测结果。如果没有主要组织和解剖特征之间转录差异的数据,通过转录谱鉴定新型模式生物中的细胞类型是困难的。在这里,我们报告了淡水浮游甲壳类动物大水蚤(Daphnia magna)组织和器官特异性转录组学的第一个数据集,报告了胚胎、血细胞、肠道、甲壳、触角-2和头部以及剩余的胴体的标记。胚胎的转录特征与成体的差异最大,其中触角和甲壳的差异最大。我们证明胚胎与成人以及各种成人解剖特征的转录标记可用于验证和功能解释已发表的对环境因素(如感染、缺氧、毒物或激素)的差异表达;对水蚤单细胞数据进行注释;并询问有关扩展基因家族中转录多样化的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transcriptional atlas of Daphnia magna

Transcriptional atlas of Daphnia magna
Transcriptomics studies are more likely to achieve predictive results when they rely on tissue- and cell-specific transcriptional data. Identification of cell types in novel model organisms by their transcriptional profiles is difficult without data on transcriptional differences among major tissues and anatomical features. Here we report the first dataset on tissue- and organ-specific transcriptomics in freshwater plankton crustacean Daphnia magna, reporting markers of embryos, hemocytes, gut, carapace, antennae-2, and head, as well as the remaining carcass. Embryos are the most transcriptionally different from adults' features, with antennae and carapace being the most differentiated among them. We demonstrate that transcriptional markers of embryos vs. adults and of various adult anatomical features can be used to provide validation and functional explanation to published differential expression in response to environmental factors like infection, hypoxia, toxicants, or kairomones; to annotate Daphnia single cell data; and to ask questions about transcriptional diversification within extended gene families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信