大浓度范围内快速绘制聚合物溶液相图的新方法

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Xiangjun Gong*, Lin Lian, Xianyu Qi, Jiahui Zhang, Wenjie Du, Juan Li, Jinliang Qiao and Chi Wu, 
{"title":"大浓度范围内快速绘制聚合物溶液相图的新方法","authors":"Xiangjun Gong*,&nbsp;Lin Lian,&nbsp;Xianyu Qi,&nbsp;Jiahui Zhang,&nbsp;Wenjie Du,&nbsp;Juan Li,&nbsp;Jinliang Qiao and Chi Wu,&nbsp;","doi":"10.1021/acs.macromol.4c0322310.1021/acs.macromol.4c03223","DOIUrl":null,"url":null,"abstract":"<p >Many industrial applications require a quick method to determine the chain length-dependent phase diagram of a given polymer solution, such as converting a solution polymerization into a precipitation polymerization, to greatly save the cost. However, it is rather difficult and time-consuming to precisely map phase diagrams of polymer solutions with different chain lengths, so that good phase diagrams are scarcely documented in the literature. The difficulties come from two facts: (1) one has to prepare polymer solutions with different concentrations and chain lengths first, and then (2) measure the temperature dependent on each solution carefully, normally taking months if not years. In this study, the chain length and temperature-dependent scaling laws for linear polymer phase diagrams were established as <i></i><math><msub><mi>Φ</mi><mi>l</mi></msub><mo>=</mo><msub><mi>Φ</mi><mi>C</mi></msub><mo>−</mo><msup><msub><mi>Φ</mi><mn>0</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mrow><mo>−</mo><mn>0.22</mn></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.326</mn></msup><mo>+</mo><msup><msub><mi>Φ</mi><mn>1</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mn>0.014</mn></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.827</mn></msup></math> and <i></i><math><msub><mi>Φ</mi><mi>h</mi></msub><mo>=</mo><msub><mi>Φ</mi><mi>C</mi></msub><mo>+</mo><msup><msub><mi>Φ</mi><mn>0</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mrow><mo>−</mo><mn>0.22</mn></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.326</mn></msup><mo>+</mo><msup><msub><mi>Φ</mi><mn>2</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mn>0.014</mn></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.827</mn></msup></math>for concentrations (Φ<sub>l</sub> and Φ<sub>h</sub>) lower and higher than the critical concentration (Φ<sub>C</sub>), where <i>T</i><sub>C</sub> is the critical temperature; and Φ<sub>0</sub>, Φ<sub>1</sub>, and Φ<sub>2</sub> are the chain-length independent parameters. Armed with these scaling laws, we have developed a quick optical method to map the coexistence curve of the phase diagram of each kind of polymer solution by measuring the phase transition temperatures of five or more polymer solutions with a given chain length but different concentrations to determine the five parameters Φ<sub>C</sub>, <i>T</i><sub>C</sub>, Φ<sub>0</sub>, Φ<sub>1</sub>, and Φ<sub>2</sub>.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 7","pages":"3471–3477 3471–3477"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Method of Quickly Mapping Phase Diagrams of Polymer Solutions over a Wide Concentration Range\",\"authors\":\"Xiangjun Gong*,&nbsp;Lin Lian,&nbsp;Xianyu Qi,&nbsp;Jiahui Zhang,&nbsp;Wenjie Du,&nbsp;Juan Li,&nbsp;Jinliang Qiao and Chi Wu,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c0322310.1021/acs.macromol.4c03223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Many industrial applications require a quick method to determine the chain length-dependent phase diagram of a given polymer solution, such as converting a solution polymerization into a precipitation polymerization, to greatly save the cost. However, it is rather difficult and time-consuming to precisely map phase diagrams of polymer solutions with different chain lengths, so that good phase diagrams are scarcely documented in the literature. The difficulties come from two facts: (1) one has to prepare polymer solutions with different concentrations and chain lengths first, and then (2) measure the temperature dependent on each solution carefully, normally taking months if not years. In this study, the chain length and temperature-dependent scaling laws for linear polymer phase diagrams were established as <i></i><math><msub><mi>Φ</mi><mi>l</mi></msub><mo>=</mo><msub><mi>Φ</mi><mi>C</mi></msub><mo>−</mo><msup><msub><mi>Φ</mi><mn>0</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mrow><mo>−</mo><mn>0.22</mn></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.326</mn></msup><mo>+</mo><msup><msub><mi>Φ</mi><mn>1</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mn>0.014</mn></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.827</mn></msup></math> and <i></i><math><msub><mi>Φ</mi><mi>h</mi></msub><mo>=</mo><msub><mi>Φ</mi><mi>C</mi></msub><mo>+</mo><msup><msub><mi>Φ</mi><mn>0</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mrow><mo>−</mo><mn>0.22</mn></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.326</mn></msup><mo>+</mo><msup><msub><mi>Φ</mi><mn>2</mn></msub><mo>*</mo></msup><msup><mi>N</mi><mn>0.014</mn></msup><msup><mrow><mo>(</mo><mfrac><mrow><msub><mi>T</mi><mi>C</mi></msub><mo>−</mo><mi>T</mi></mrow><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>0.827</mn></msup></math>for concentrations (Φ<sub>l</sub> and Φ<sub>h</sub>) lower and higher than the critical concentration (Φ<sub>C</sub>), where <i>T</i><sub>C</sub> is the critical temperature; and Φ<sub>0</sub>, Φ<sub>1</sub>, and Φ<sub>2</sub> are the chain-length independent parameters. Armed with these scaling laws, we have developed a quick optical method to map the coexistence curve of the phase diagram of each kind of polymer solution by measuring the phase transition temperatures of five or more polymer solutions with a given chain length but different concentrations to determine the five parameters Φ<sub>C</sub>, <i>T</i><sub>C</sub>, Φ<sub>0</sub>, Φ<sub>1</sub>, and Φ<sub>2</sub>.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 7\",\"pages\":\"3471–3477 3471–3477\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c03223\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c03223","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

许多工业应用需要一种快速的方法来确定给定聚合物溶液的链长相关相图,例如将溶液聚合转化为沉淀聚合,以大大节省成本。然而,精确绘制不同链长的聚合物溶液的相图是相当困难和耗时的,因此文献中很少有好的相图。困难来自两个方面:(1)首先必须准备不同浓度和不同链长的聚合物溶液,然后(2)仔细测量每种溶液的温度,通常需要数月甚至数年的时间。在这项研究中,链的长度和与温度有关的缩放法律建立了线性聚合物相图Φl =ΦC−Φ0 * N−0.22 (TC−TTC) 0.326 +Φ1 * N0.014 (TC−TTC) 0.827和Φh =ΦC +Φ0 * N−0.22 (TC−TTC) 0.326 +Φ2 * N0.014 (TC−TTC) 0.827(Φl和Φh)浓度低,高于临界浓度(ΦC),其中TC是临界温度;其中Φ0、Φ1、Φ2为与链长无关的参数。利用这些标度定律,我们开发了一种快速的光学方法,通过测量五种或多种具有给定链长但不同浓度的聚合物溶液的相变温度来绘制每种聚合物溶液相图的共存曲线,以确定五个参数ΦC, TC, Φ0, Φ1和Φ2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Method of Quickly Mapping Phase Diagrams of Polymer Solutions over a Wide Concentration Range

New Method of Quickly Mapping Phase Diagrams of Polymer Solutions over a Wide Concentration Range

Many industrial applications require a quick method to determine the chain length-dependent phase diagram of a given polymer solution, such as converting a solution polymerization into a precipitation polymerization, to greatly save the cost. However, it is rather difficult and time-consuming to precisely map phase diagrams of polymer solutions with different chain lengths, so that good phase diagrams are scarcely documented in the literature. The difficulties come from two facts: (1) one has to prepare polymer solutions with different concentrations and chain lengths first, and then (2) measure the temperature dependent on each solution carefully, normally taking months if not years. In this study, the chain length and temperature-dependent scaling laws for linear polymer phase diagrams were established as Φl=ΦCΦ0*N0.22(TCTTC)0.326+Φ1*N0.014(TCTTC)0.827 and Φh=ΦC+Φ0*N0.22(TCTTC)0.326+Φ2*N0.014(TCTTC)0.827for concentrations (Φl and Φh) lower and higher than the critical concentration (ΦC), where TC is the critical temperature; and Φ0, Φ1, and Φ2 are the chain-length independent parameters. Armed with these scaling laws, we have developed a quick optical method to map the coexistence curve of the phase diagram of each kind of polymer solution by measuring the phase transition temperatures of five or more polymer solutions with a given chain length but different concentrations to determine the five parameters ΦC, TC, Φ0, Φ1, and Φ2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信