Adriana Ivich, Natalie R. Davidson, Laurie Grieshober, Weishan Li, Stephanie C. Hicks, Jennifer A. Doherty, Casey S. Greene
{"title":"单细胞参考中缺失的细胞类型影响大量数据的反褶积,但可以检测到","authors":"Adriana Ivich, Natalie R. Davidson, Laurie Grieshober, Weishan Li, Stephanie C. Hicks, Jennifer A. Doherty, Casey S. Greene","doi":"10.1186/s13059-025-03506-9","DOIUrl":null,"url":null,"abstract":"Advancements in RNA sequencing have expanded our ability to study gene expression profiles of biological samples in bulk tissue and single cells. Deconvolution of bulk data with single-cell references provides the ability to study relative cell-type proportions, but most methods assume a reference is present for every cell type in bulk data. This is not true in all circumstances—cell types can be missing in single-cell profiles for many reasons. In this study, we examine the impact of missing cell types on deconvolution methods. Using paired single-cell and single-nucleus data, we simulate realistic scenarios where cell types are missing since single-nucleus RNA sequencing is able to capture cell types that would otherwise be missing in a single-cell counterpart. Single-nucleus sequencing captures cell types absent in single-cell counterparts, allowing us to study their effects on deconvolution. We evaluate three different methods and find that performance is influenced by both the number and similarity of missing cell types. Additionally, missing cell-type profiles can be recovered from residuals using a simple non-negative matrix factorization strategy. We also analyzed real bulk data of cancerous and non-cancerous samples. We observe results consistent with simulation, namely that expression patterns from cell types likely to be missing appear present in residuals. We expect our results to provide a starting point for those developing new deconvolution methods and help improve their to better account for the presence of missing cell types. Our results suggest that deconvolution methods should consider the possibility of missing cell types.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing cell types in single-cell references impact deconvolution of bulk data but are detectable\",\"authors\":\"Adriana Ivich, Natalie R. Davidson, Laurie Grieshober, Weishan Li, Stephanie C. Hicks, Jennifer A. Doherty, Casey S. Greene\",\"doi\":\"10.1186/s13059-025-03506-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in RNA sequencing have expanded our ability to study gene expression profiles of biological samples in bulk tissue and single cells. Deconvolution of bulk data with single-cell references provides the ability to study relative cell-type proportions, but most methods assume a reference is present for every cell type in bulk data. This is not true in all circumstances—cell types can be missing in single-cell profiles for many reasons. In this study, we examine the impact of missing cell types on deconvolution methods. Using paired single-cell and single-nucleus data, we simulate realistic scenarios where cell types are missing since single-nucleus RNA sequencing is able to capture cell types that would otherwise be missing in a single-cell counterpart. Single-nucleus sequencing captures cell types absent in single-cell counterparts, allowing us to study their effects on deconvolution. We evaluate three different methods and find that performance is influenced by both the number and similarity of missing cell types. Additionally, missing cell-type profiles can be recovered from residuals using a simple non-negative matrix factorization strategy. We also analyzed real bulk data of cancerous and non-cancerous samples. We observe results consistent with simulation, namely that expression patterns from cell types likely to be missing appear present in residuals. We expect our results to provide a starting point for those developing new deconvolution methods and help improve their to better account for the presence of missing cell types. Our results suggest that deconvolution methods should consider the possibility of missing cell types.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03506-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03506-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Missing cell types in single-cell references impact deconvolution of bulk data but are detectable
Advancements in RNA sequencing have expanded our ability to study gene expression profiles of biological samples in bulk tissue and single cells. Deconvolution of bulk data with single-cell references provides the ability to study relative cell-type proportions, but most methods assume a reference is present for every cell type in bulk data. This is not true in all circumstances—cell types can be missing in single-cell profiles for many reasons. In this study, we examine the impact of missing cell types on deconvolution methods. Using paired single-cell and single-nucleus data, we simulate realistic scenarios where cell types are missing since single-nucleus RNA sequencing is able to capture cell types that would otherwise be missing in a single-cell counterpart. Single-nucleus sequencing captures cell types absent in single-cell counterparts, allowing us to study their effects on deconvolution. We evaluate three different methods and find that performance is influenced by both the number and similarity of missing cell types. Additionally, missing cell-type profiles can be recovered from residuals using a simple non-negative matrix factorization strategy. We also analyzed real bulk data of cancerous and non-cancerous samples. We observe results consistent with simulation, namely that expression patterns from cell types likely to be missing appear present in residuals. We expect our results to provide a starting point for those developing new deconvolution methods and help improve their to better account for the presence of missing cell types. Our results suggest that deconvolution methods should consider the possibility of missing cell types.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.