Huaibao Qiu, Fan Wu, Jie Yuan, Wenhui Feng and Xiaoqing Qiu
{"title":"压电光催化剂中的氧空位:合成、表征、作用机理及应用","authors":"Huaibao Qiu, Fan Wu, Jie Yuan, Wenhui Feng and Xiaoqing Qiu","doi":"10.1039/D5CP00616C","DOIUrl":null,"url":null,"abstract":"<p >The escalating consumption of fossil fuels and the worsening of environmental pollution have rendered the advancement of sustainable clean energy conversion technologies an urgent priority. Piezo-photocatalytic technology, which integrates piezoelectric and photoexcited properties, provides an efficient means of converting chemical energy by utilizing mechanical and solar energy. Oxygen vacancies (OVs), as a critical type of defect structure, play a significant role in enhancing piezo-photocatalytic performance by modifying the band structure, improving polarization effects, and providing additional active sites. This review comprehensively examines the formation methods and characterization techniques of OVs, alongside their mechanistic roles in piezo-photocatalytic technology. We discuss how OVs influence the band structure, dipole moments, and local electronic configurations. Furthermore, we summarize the applications of OVs in various fields, including water pollution degradation, hydrogen production, nitrogen fixation, and CO<small><sub>2</sub></small> reduction. Finally, we outline future research directions for OVs, focusing on precise synthesis methods, the development of novel piezoelectric materials, enhancement of stability, and the investigation of interactions between OVs and other local structures. We hope that this review will provide valuable insights for the continued development and application of OVs in piezo-photocatalysis.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 18","pages":" 9304-9328"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancies in piezo-photocatalysts: synthesis, characterization, effect mechanism and application\",\"authors\":\"Huaibao Qiu, Fan Wu, Jie Yuan, Wenhui Feng and Xiaoqing Qiu\",\"doi\":\"10.1039/D5CP00616C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The escalating consumption of fossil fuels and the worsening of environmental pollution have rendered the advancement of sustainable clean energy conversion technologies an urgent priority. Piezo-photocatalytic technology, which integrates piezoelectric and photoexcited properties, provides an efficient means of converting chemical energy by utilizing mechanical and solar energy. Oxygen vacancies (OVs), as a critical type of defect structure, play a significant role in enhancing piezo-photocatalytic performance by modifying the band structure, improving polarization effects, and providing additional active sites. This review comprehensively examines the formation methods and characterization techniques of OVs, alongside their mechanistic roles in piezo-photocatalytic technology. We discuss how OVs influence the band structure, dipole moments, and local electronic configurations. Furthermore, we summarize the applications of OVs in various fields, including water pollution degradation, hydrogen production, nitrogen fixation, and CO<small><sub>2</sub></small> reduction. Finally, we outline future research directions for OVs, focusing on precise synthesis methods, the development of novel piezoelectric materials, enhancement of stability, and the investigation of interactions between OVs and other local structures. We hope that this review will provide valuable insights for the continued development and application of OVs in piezo-photocatalysis.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 18\",\"pages\":\" 9304-9328\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00616c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00616c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Oxygen vacancies in piezo-photocatalysts: synthesis, characterization, effect mechanism and application
The escalating consumption of fossil fuels and the worsening of environmental pollution have rendered the advancement of sustainable clean energy conversion technologies an urgent priority. Piezo-photocatalytic technology, which integrates piezoelectric and photoexcited properties, provides an efficient means of converting chemical energy by utilizing mechanical and solar energy. Oxygen vacancies (OVs), as a critical type of defect structure, play a significant role in enhancing piezo-photocatalytic performance by modifying the band structure, improving polarization effects, and providing additional active sites. This review comprehensively examines the formation methods and characterization techniques of OVs, alongside their mechanistic roles in piezo-photocatalytic technology. We discuss how OVs influence the band structure, dipole moments, and local electronic configurations. Furthermore, we summarize the applications of OVs in various fields, including water pollution degradation, hydrogen production, nitrogen fixation, and CO2 reduction. Finally, we outline future research directions for OVs, focusing on precise synthesis methods, the development of novel piezoelectric materials, enhancement of stability, and the investigation of interactions between OVs and other local structures. We hope that this review will provide valuable insights for the continued development and application of OVs in piezo-photocatalysis.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.