机器学习方法可以跨领域发现治疗方法。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Prabal Chhibbar, Jishnu Das
{"title":"机器学习方法可以跨领域发现治疗方法。","authors":"Prabal Chhibbar, Jishnu Das","doi":"10.1016/j.ymthe.2025.04.001","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-modal datasets have grown exponentially in the last decade. This has created an enormous demand for machine learning models that can predict complex outcomes by leveraging cellular, molecular and humoral profiles. Corresponding inference of mechanisms can help uncover new therapeutic targets. Here, we discuss how biological principles guide the design of predictive models and how interpretable machine learning can lead to novel mechanistic insights. We provide descriptions of multiple learning techniques and how suited they are to domain adaptations. Finally, we talk about broad learning capabilities of foundation models on large datasets and whether they can be used to provide meaningful inference about biological datasets.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches enable the discovery of therapeutics across domains.\",\"authors\":\"Prabal Chhibbar, Jishnu Das\",\"doi\":\"10.1016/j.ymthe.2025.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-modal datasets have grown exponentially in the last decade. This has created an enormous demand for machine learning models that can predict complex outcomes by leveraging cellular, molecular and humoral profiles. Corresponding inference of mechanisms can help uncover new therapeutic targets. Here, we discuss how biological principles guide the design of predictive models and how interpretable machine learning can lead to novel mechanistic insights. We provide descriptions of multiple learning techniques and how suited they are to domain adaptations. Finally, we talk about broad learning capabilities of foundation models on large datasets and whether they can be used to provide meaningful inference about biological datasets.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.04.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.04.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,多模态数据集呈指数级增长。这就产生了对机器学习模型的巨大需求,这些模型可以通过利用细胞、分子和体液谱来预测复杂的结果。相应的机制推断有助于发现新的治疗靶点。在这里,我们讨论了生物学原理如何指导预测模型的设计,以及可解释的机器学习如何导致新的机制见解。我们提供了多种学习技术的描述,以及它们如何适合于领域适应。最后,我们讨论了基础模型在大型数据集上的广泛学习能力,以及它们是否可以用于提供关于生物数据集的有意义的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning approaches enable the discovery of therapeutics across domains.

Multi-modal datasets have grown exponentially in the last decade. This has created an enormous demand for machine learning models that can predict complex outcomes by leveraging cellular, molecular and humoral profiles. Corresponding inference of mechanisms can help uncover new therapeutic targets. Here, we discuss how biological principles guide the design of predictive models and how interpretable machine learning can lead to novel mechanistic insights. We provide descriptions of multiple learning techniques and how suited they are to domain adaptations. Finally, we talk about broad learning capabilities of foundation models on large datasets and whether they can be used to provide meaningful inference about biological datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信