Andrew J Krupien, Yasin Abdulkadir, Dishane C Luximon, John Charters, Huiming Dong, Jonathan Pham, Dylan O'Connell, Jack Neylon, James M Lamb
{"title":"用于前列腺和妇科高剂量近距离放射治疗的正常结构分割的开源深度学习模型:架构的比较。","authors":"Andrew J Krupien, Yasin Abdulkadir, Dishane C Luximon, John Charters, Huiming Dong, Jonathan Pham, Dylan O'Connell, Jack Neylon, James M Lamb","doi":"10.1002/acm2.70089","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The use of deep learning-based auto-contouring algorithms in various treatment planning services is increasingly common. There is a notable deficit of commercially or publicly available models trained on large or diverse datasets containing high-dose-rate (HDR) brachytherapy treatment scans, leading to poor performance on images that include HDR implants.</p><p><strong>Purpose: </strong>To implement and evaluate automatic organs-at-risk (OARs) segmentation models for use in prostatic-and-gynecological computed tomography (CT)-guided high-dose-rate brachytherapy treatment planning.</p><p><strong>Methods and materials: </strong>1316 computed tomography (CT) scans and corresponding segmentation files from 1105 prostatic-or-gynecological HDR patients treated at our institution from 2017 to 2024 were used for model training. Data sources comprised six CT scanners including a mobile CT unit with previously reported susceptibility to image streaking artifacts. Two UNet-derived model architectures, UNet++ and nnU-Net, were investigated for bladder and rectum model training. The models were tested on 100 CT scans and clinically-used segmentation files from 62 prostatic-or-gynecological HDR brachytherapy patients, disjoint from the training set, collected in 2024. Performance was evaluated using the Dice-Similarity-Coefficient (DSC) between model predicted contours and clinically-used contours on slices in common with the Clinical-Target-Volume (CTV). Additionally, a blinded evaluation of ten random test cases was conducted by three experienced planners.</p><p><strong>Results: </strong>Median (interquartile range) 3D DSC on CTV-containing slices were 0.95 (0.04) and 0.87 (0.09) for the UNet++ bladder and rectum models, respectively, and 0.96 (0.03) and 0.88 (0.10) for the nnU-Net. The rank-sum test did not reveal statistically significant differences in these DSC (p = 0.15 and 0.27, respectively). The blinded evaluation scored trained models higher than clinically-used contours.</p><p><strong>Conclusion: </strong>Both UNet-derived architectures perform similarly on the bladder and rectum and are adequately accurate to reduce contouring time in a review-and-edit context during HDR brachytherapy planning. The UNet++ models were chosen for implementation at our institution due to lower computing hardware requirements and are in routine clinical use.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e70089"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-source deep-learning models for segmentation of normal structures for prostatic and gynecological high-dose-rate brachytherapy: Comparison of architectures.\",\"authors\":\"Andrew J Krupien, Yasin Abdulkadir, Dishane C Luximon, John Charters, Huiming Dong, Jonathan Pham, Dylan O'Connell, Jack Neylon, James M Lamb\",\"doi\":\"10.1002/acm2.70089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The use of deep learning-based auto-contouring algorithms in various treatment planning services is increasingly common. There is a notable deficit of commercially or publicly available models trained on large or diverse datasets containing high-dose-rate (HDR) brachytherapy treatment scans, leading to poor performance on images that include HDR implants.</p><p><strong>Purpose: </strong>To implement and evaluate automatic organs-at-risk (OARs) segmentation models for use in prostatic-and-gynecological computed tomography (CT)-guided high-dose-rate brachytherapy treatment planning.</p><p><strong>Methods and materials: </strong>1316 computed tomography (CT) scans and corresponding segmentation files from 1105 prostatic-or-gynecological HDR patients treated at our institution from 2017 to 2024 were used for model training. Data sources comprised six CT scanners including a mobile CT unit with previously reported susceptibility to image streaking artifacts. Two UNet-derived model architectures, UNet++ and nnU-Net, were investigated for bladder and rectum model training. The models were tested on 100 CT scans and clinically-used segmentation files from 62 prostatic-or-gynecological HDR brachytherapy patients, disjoint from the training set, collected in 2024. Performance was evaluated using the Dice-Similarity-Coefficient (DSC) between model predicted contours and clinically-used contours on slices in common with the Clinical-Target-Volume (CTV). Additionally, a blinded evaluation of ten random test cases was conducted by three experienced planners.</p><p><strong>Results: </strong>Median (interquartile range) 3D DSC on CTV-containing slices were 0.95 (0.04) and 0.87 (0.09) for the UNet++ bladder and rectum models, respectively, and 0.96 (0.03) and 0.88 (0.10) for the nnU-Net. The rank-sum test did not reveal statistically significant differences in these DSC (p = 0.15 and 0.27, respectively). The blinded evaluation scored trained models higher than clinically-used contours.</p><p><strong>Conclusion: </strong>Both UNet-derived architectures perform similarly on the bladder and rectum and are adequately accurate to reduce contouring time in a review-and-edit context during HDR brachytherapy planning. The UNet++ models were chosen for implementation at our institution due to lower computing hardware requirements and are in routine clinical use.</p>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\" \",\"pages\":\"e70089\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/acm2.70089\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.70089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Open-source deep-learning models for segmentation of normal structures for prostatic and gynecological high-dose-rate brachytherapy: Comparison of architectures.
Background: The use of deep learning-based auto-contouring algorithms in various treatment planning services is increasingly common. There is a notable deficit of commercially or publicly available models trained on large or diverse datasets containing high-dose-rate (HDR) brachytherapy treatment scans, leading to poor performance on images that include HDR implants.
Purpose: To implement and evaluate automatic organs-at-risk (OARs) segmentation models for use in prostatic-and-gynecological computed tomography (CT)-guided high-dose-rate brachytherapy treatment planning.
Methods and materials: 1316 computed tomography (CT) scans and corresponding segmentation files from 1105 prostatic-or-gynecological HDR patients treated at our institution from 2017 to 2024 were used for model training. Data sources comprised six CT scanners including a mobile CT unit with previously reported susceptibility to image streaking artifacts. Two UNet-derived model architectures, UNet++ and nnU-Net, were investigated for bladder and rectum model training. The models were tested on 100 CT scans and clinically-used segmentation files from 62 prostatic-or-gynecological HDR brachytherapy patients, disjoint from the training set, collected in 2024. Performance was evaluated using the Dice-Similarity-Coefficient (DSC) between model predicted contours and clinically-used contours on slices in common with the Clinical-Target-Volume (CTV). Additionally, a blinded evaluation of ten random test cases was conducted by three experienced planners.
Results: Median (interquartile range) 3D DSC on CTV-containing slices were 0.95 (0.04) and 0.87 (0.09) for the UNet++ bladder and rectum models, respectively, and 0.96 (0.03) and 0.88 (0.10) for the nnU-Net. The rank-sum test did not reveal statistically significant differences in these DSC (p = 0.15 and 0.27, respectively). The blinded evaluation scored trained models higher than clinically-used contours.
Conclusion: Both UNet-derived architectures perform similarly on the bladder and rectum and are adequately accurate to reduce contouring time in a review-and-edit context during HDR brachytherapy planning. The UNet++ models were chosen for implementation at our institution due to lower computing hardware requirements and are in routine clinical use.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic