CAN-Scan:一个多组学表型驱动的精确肿瘤学平台,可识别结直肠癌治疗反应的预后生物标志物。

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2025-04-15 Epub Date: 2025-04-04 DOI:10.1016/j.xcrm.2025.102053
Shumei Chia, Justine Jia Wen Seow, Rafael Peres da Silva, Chayaporn Suphavilai, Niranjan Shirgaonkar, Maki Murata-Hori, Xiaoqian Zhang, Elena Yaqing Yong, Jiajia Pan, Matan Thangavelu Thangavelu, Giridharan Periyasamy, Aixin Yap, Padmaja Anand, Daniel Muliaditan, Yun Shen Chan, Wang Siyu, Chua Wei Yong, Nguyen Hong, Gao Ran, Ngak Leng Sim, Yu Amanda Guo, Andrea Xin Yi Teh, Clarinda Chua Wei Ling, Emile Kwong Wei Tan, Fu Wan Pei Cherylin, Meihuan Chang, Shuting Han, Isaac Seow-En, Lionel Raphael Chen Hui, Anna Hwee Hsia Gan, Choon Kong Yap, Huck Hui Ng, Anders Jacobsen Skanderup, Vitoon Chinswangwatanakul, Woramin Riansuwan, Atthaphorn Trakarnsanga, Manop Pithukpakorn, Pariyada Tanjak, Amphun Chaiboonchoe, Daye Park, Dong Keon Kim, Narayanan Gopalakrishna Iyer, Petros Tsantoulis, Sabine Tejpar, Jung Eun Kim, Tae Il Kim, Somponnat Sampattavanich, Iain Beehuat Tan, Niranjan Nagarajan, Ramanuj DasGupta
{"title":"CAN-Scan:一个多组学表型驱动的精确肿瘤学平台,可识别结直肠癌治疗反应的预后生物标志物。","authors":"Shumei Chia, Justine Jia Wen Seow, Rafael Peres da Silva, Chayaporn Suphavilai, Niranjan Shirgaonkar, Maki Murata-Hori, Xiaoqian Zhang, Elena Yaqing Yong, Jiajia Pan, Matan Thangavelu Thangavelu, Giridharan Periyasamy, Aixin Yap, Padmaja Anand, Daniel Muliaditan, Yun Shen Chan, Wang Siyu, Chua Wei Yong, Nguyen Hong, Gao Ran, Ngak Leng Sim, Yu Amanda Guo, Andrea Xin Yi Teh, Clarinda Chua Wei Ling, Emile Kwong Wei Tan, Fu Wan Pei Cherylin, Meihuan Chang, Shuting Han, Isaac Seow-En, Lionel Raphael Chen Hui, Anna Hwee Hsia Gan, Choon Kong Yap, Huck Hui Ng, Anders Jacobsen Skanderup, Vitoon Chinswangwatanakul, Woramin Riansuwan, Atthaphorn Trakarnsanga, Manop Pithukpakorn, Pariyada Tanjak, Amphun Chaiboonchoe, Daye Park, Dong Keon Kim, Narayanan Gopalakrishna Iyer, Petros Tsantoulis, Sabine Tejpar, Jung Eun Kim, Tae Il Kim, Somponnat Sampattavanich, Iain Beehuat Tan, Niranjan Nagarajan, Ramanuj DasGupta","doi":"10.1016/j.xcrm.2025.102053","DOIUrl":null,"url":null,"abstract":"<p><p>Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (C<sub>max</sub>), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102053"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047494/pdf/","citationCount":"0","resultStr":"{\"title\":\"CAN-Scan: A multi-omic phenotype-driven precision oncology platform identifies prognostic biomarkers of therapy response for colorectal cancer.\",\"authors\":\"Shumei Chia, Justine Jia Wen Seow, Rafael Peres da Silva, Chayaporn Suphavilai, Niranjan Shirgaonkar, Maki Murata-Hori, Xiaoqian Zhang, Elena Yaqing Yong, Jiajia Pan, Matan Thangavelu Thangavelu, Giridharan Periyasamy, Aixin Yap, Padmaja Anand, Daniel Muliaditan, Yun Shen Chan, Wang Siyu, Chua Wei Yong, Nguyen Hong, Gao Ran, Ngak Leng Sim, Yu Amanda Guo, Andrea Xin Yi Teh, Clarinda Chua Wei Ling, Emile Kwong Wei Tan, Fu Wan Pei Cherylin, Meihuan Chang, Shuting Han, Isaac Seow-En, Lionel Raphael Chen Hui, Anna Hwee Hsia Gan, Choon Kong Yap, Huck Hui Ng, Anders Jacobsen Skanderup, Vitoon Chinswangwatanakul, Woramin Riansuwan, Atthaphorn Trakarnsanga, Manop Pithukpakorn, Pariyada Tanjak, Amphun Chaiboonchoe, Daye Park, Dong Keon Kim, Narayanan Gopalakrishna Iyer, Petros Tsantoulis, Sabine Tejpar, Jung Eun Kim, Tae Il Kim, Somponnat Sampattavanich, Iain Beehuat Tan, Niranjan Nagarajan, Ramanuj DasGupta\",\"doi\":\"10.1016/j.xcrm.2025.102053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (C<sub>max</sub>), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102053\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047494/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102053\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102053","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)在癌症特异性药物基因组学数据集上的应用显示了识别预测性反应生物标志物以实现个性化治疗的巨大前景。我们介绍了CAN-Scan,这是一个精确的肿瘤学平台,它将ML应用于从患者来源的原代细胞系(PDCs)的冷冻存活生物库生成的下一代药物基因组数据集。这些PDCs是针对84种FDA批准的临床相关剂量(Cmax)药物进行筛选的,重点是结肠直肠癌(CRC)作为模型系统。CAN-Scan揭示了预后生物标志物和替代治疗策略,特别是对一线化疗无反应的患者。具体来说,它确定了与5-氟尿嘧啶(5-FU)药物耐药性相关的基因表达特征,以及染色体7q上的局部拷贝数增加,其中包含关键的耐药性相关基因。can扫描衍生的反应特征准确地预测了四个独立的、不同种族的CRC队列的临床结果。值得注意的是,药物特异性ML模型显示regorafenib和vemurafenib是braf表达的5- fu不敏感CRC的替代治疗方法。总之,这种方法在改善生物标志物发现和指导个性化治疗方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAN-Scan: A multi-omic phenotype-driven precision oncology platform identifies prognostic biomarkers of therapy response for colorectal cancer.

Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (Cmax), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信