Jorge Antonio Elias Godoy Carlos, Mauricio Temotheo Tavares, Keli Lima, Larissa Costa de Almeida, Karoline de Barros Waitman, Leticia Veras Costa-Lotufo, Roberto Parise-Filho, João Agostinho Machado-Neto
{"title":"通过与HDAC抑制剂的关联增强venetoclax在白血病中的疗效。","authors":"Jorge Antonio Elias Godoy Carlos, Mauricio Temotheo Tavares, Keli Lima, Larissa Costa de Almeida, Karoline de Barros Waitman, Leticia Veras Costa-Lotufo, Roberto Parise-Filho, João Agostinho Machado-Neto","doi":"10.1038/s41420-025-02446-4","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic modifications significantly influence gene expression and play crucial roles in various biological processes, including carcinogenesis. This study investigates the effects of novel purine-benzohydroxamate compounds, particularly 4 f, as hybrid kinase/histone deacetylase (HDAC) inhibitors in hematological malignancies, focusing on acute myeloid leukemia (AML). Our results demonstrate that these compounds selectively reduce cell viability in blood cancer cells, with inhibitory concentration values indicating higher potency against neoplastic cells compared to normal leukocytes. Mechanistically, 4 f induces apoptosis and cell cycle arrest, promoting differentiation in leukemia cells, while effectively inhibiting HDAC activity. Furthermore, 4 f enhances the therapeutic efficacy of venetoclax, a BCL2 inhibitor, in AML models sensitive and resistant to this drug. The combination treatment significantly increases apoptosis and reduces cell viability, suggesting a synergistic effect that may overcome drug resistance. This study provides valuable insights into the potential of HDAC inhibitors, particularly 4 f, as a promising therapeutic strategy for treating resistant hematological malignancies. Our findings underscore the importance of further exploring hybrid kinase/HDAC inhibitors in combination therapies to improve outcomes in patients with acute leukemias and other hematological malignancies.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"147"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing venetoclax efficacy in leukemia through association with HDAC inhibitors.\",\"authors\":\"Jorge Antonio Elias Godoy Carlos, Mauricio Temotheo Tavares, Keli Lima, Larissa Costa de Almeida, Karoline de Barros Waitman, Leticia Veras Costa-Lotufo, Roberto Parise-Filho, João Agostinho Machado-Neto\",\"doi\":\"10.1038/s41420-025-02446-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic modifications significantly influence gene expression and play crucial roles in various biological processes, including carcinogenesis. This study investigates the effects of novel purine-benzohydroxamate compounds, particularly 4 f, as hybrid kinase/histone deacetylase (HDAC) inhibitors in hematological malignancies, focusing on acute myeloid leukemia (AML). Our results demonstrate that these compounds selectively reduce cell viability in blood cancer cells, with inhibitory concentration values indicating higher potency against neoplastic cells compared to normal leukocytes. Mechanistically, 4 f induces apoptosis and cell cycle arrest, promoting differentiation in leukemia cells, while effectively inhibiting HDAC activity. Furthermore, 4 f enhances the therapeutic efficacy of venetoclax, a BCL2 inhibitor, in AML models sensitive and resistant to this drug. The combination treatment significantly increases apoptosis and reduces cell viability, suggesting a synergistic effect that may overcome drug resistance. This study provides valuable insights into the potential of HDAC inhibitors, particularly 4 f, as a promising therapeutic strategy for treating resistant hematological malignancies. Our findings underscore the importance of further exploring hybrid kinase/HDAC inhibitors in combination therapies to improve outcomes in patients with acute leukemias and other hematological malignancies.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"147\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02446-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02446-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Enhancing venetoclax efficacy in leukemia through association with HDAC inhibitors.
Epigenetic modifications significantly influence gene expression and play crucial roles in various biological processes, including carcinogenesis. This study investigates the effects of novel purine-benzohydroxamate compounds, particularly 4 f, as hybrid kinase/histone deacetylase (HDAC) inhibitors in hematological malignancies, focusing on acute myeloid leukemia (AML). Our results demonstrate that these compounds selectively reduce cell viability in blood cancer cells, with inhibitory concentration values indicating higher potency against neoplastic cells compared to normal leukocytes. Mechanistically, 4 f induces apoptosis and cell cycle arrest, promoting differentiation in leukemia cells, while effectively inhibiting HDAC activity. Furthermore, 4 f enhances the therapeutic efficacy of venetoclax, a BCL2 inhibitor, in AML models sensitive and resistant to this drug. The combination treatment significantly increases apoptosis and reduces cell viability, suggesting a synergistic effect that may overcome drug resistance. This study provides valuable insights into the potential of HDAC inhibitors, particularly 4 f, as a promising therapeutic strategy for treating resistant hematological malignancies. Our findings underscore the importance of further exploring hybrid kinase/HDAC inhibitors in combination therapies to improve outcomes in patients with acute leukemias and other hematological malignancies.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.