MetaGP:整合电子健康记录和多模态成像的生成基础模型,以满足未满足的临床需求。

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Fei Liu, Hongyu Zhou, Kai Wang, Yunfang Yu, Yuanxu Gao, Zhuo Sun, Sian Liu, Shanshan Sun, Zixing Zou, Zhuomin Li, Bingzhou Li, Hanpei Miao, Yang Liu, Taiwa Hou, Manson Fok, Nivritti Gajanan Patil, Kanmin Xue, Ting Li, Eric Oermann, Yun Yin, Lian Duan, Jia Qu, Xiaoying Huang, Shengwei Jin, Kang Zhang
{"title":"MetaGP:整合电子健康记录和多模态成像的生成基础模型,以满足未满足的临床需求。","authors":"Fei Liu, Hongyu Zhou, Kai Wang, Yunfang Yu, Yuanxu Gao, Zhuo Sun, Sian Liu, Shanshan Sun, Zixing Zou, Zhuomin Li, Bingzhou Li, Hanpei Miao, Yang Liu, Taiwa Hou, Manson Fok, Nivritti Gajanan Patil, Kanmin Xue, Ting Li, Eric Oermann, Yun Yin, Lian Duan, Jia Qu, Xiaoying Huang, Shengwei Jin, Kang Zhang","doi":"10.1016/j.xcrm.2025.102056","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practitioner (MetaGP), a 32-billion-parameter generative foundation model trained on extensive datasets, including over 8 million electronic health records, biomedical literature, and medical textbooks. MetaGP demonstrates robust diagnostic capabilities, achieving accuracy comparable to experienced clinicians. In rare disease cases, it achieves an average diagnostic score of 1.57, surpassing GPT-4's 0.93. For emergency conditions, it improves diagnostic accuracy for junior and mid-level clinicians by 53% and 46%, respectively. MetaGP also excels in generating medical imaging reports, producing high-quality outputs for chest X-rays and computed tomography, often rated comparable to or superior to physician-authored reports. These findings highlight MetaGP's potential to transform clinical decision-making across diverse medical contexts.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102056"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetaGP: A generative foundation model integrating electronic health records and multimodal imaging for addressing unmet clinical needs.\",\"authors\":\"Fei Liu, Hongyu Zhou, Kai Wang, Yunfang Yu, Yuanxu Gao, Zhuo Sun, Sian Liu, Shanshan Sun, Zixing Zou, Zhuomin Li, Bingzhou Li, Hanpei Miao, Yang Liu, Taiwa Hou, Manson Fok, Nivritti Gajanan Patil, Kanmin Xue, Ting Li, Eric Oermann, Yun Yin, Lian Duan, Jia Qu, Xiaoying Huang, Shengwei Jin, Kang Zhang\",\"doi\":\"10.1016/j.xcrm.2025.102056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practitioner (MetaGP), a 32-billion-parameter generative foundation model trained on extensive datasets, including over 8 million electronic health records, biomedical literature, and medical textbooks. MetaGP demonstrates robust diagnostic capabilities, achieving accuracy comparable to experienced clinicians. In rare disease cases, it achieves an average diagnostic score of 1.57, surpassing GPT-4's 0.93. For emergency conditions, it improves diagnostic accuracy for junior and mid-level clinicians by 53% and 46%, respectively. MetaGP also excels in generating medical imaging reports, producing high-quality outputs for chest X-rays and computed tomography, often rated comparable to or superior to physician-authored reports. These findings highlight MetaGP's potential to transform clinical decision-making across diverse medical contexts.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102056\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102056\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102056","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能在专业诊断方面取得了长足进步,但在罕见疾病诊断和紧急情况识别等复杂的临床场景中面临挑战。为了解决这些限制,我们开发了Meta全科医生(MetaGP),这是一个320亿个参数的生成基础模型,在广泛的数据集上训练,包括超过800万份电子健康记录、生物医学文献和医学教科书。MetaGP展示了强大的诊断能力,实现了与经验丰富的临床医生相当的准确性。在罕见疾病病例中,它的平均诊断得分为1.57,超过了GPT-4的0.93。对于紧急情况,它使初级和中级临床医生的诊断准确性分别提高了53%和46%。MetaGP还擅长生成医学成像报告,为胸部x射线和计算机断层扫描提供高质量的输出,通常被评为与医生撰写的报告相当或更好。这些发现突出了MetaGP在不同医学背景下改变临床决策的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MetaGP: A generative foundation model integrating electronic health records and multimodal imaging for addressing unmet clinical needs.

Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practitioner (MetaGP), a 32-billion-parameter generative foundation model trained on extensive datasets, including over 8 million electronic health records, biomedical literature, and medical textbooks. MetaGP demonstrates robust diagnostic capabilities, achieving accuracy comparable to experienced clinicians. In rare disease cases, it achieves an average diagnostic score of 1.57, surpassing GPT-4's 0.93. For emergency conditions, it improves diagnostic accuracy for junior and mid-level clinicians by 53% and 46%, respectively. MetaGP also excels in generating medical imaging reports, producing high-quality outputs for chest X-rays and computed tomography, often rated comparable to or superior to physician-authored reports. These findings highlight MetaGP's potential to transform clinical decision-making across diverse medical contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信