指导在循证政策决策中使用数学建模的框架。

IF 2.4 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Jacquie Oliwa, Fatuma Hassan Guleid, Collins J Owek, Justinah Maluni, Juliet Jepkosgei, Jacinta Nzinga, Vincent O Were, So Yoon Sim, Abel W Walekhwa, Hannah Clapham, Saudamini Dabak, Sarin Kc, Liza Hadley, Eduardo Undurraga, Brittany L Hagedorn, Raymond Cw Hutubessy
{"title":"指导在循证政策决策中使用数学建模的框架。","authors":"Jacquie Oliwa, Fatuma Hassan Guleid, Collins J Owek, Justinah Maluni, Juliet Jepkosgei, Jacinta Nzinga, Vincent O Were, So Yoon Sim, Abel W Walekhwa, Hannah Clapham, Saudamini Dabak, Sarin Kc, Liza Hadley, Eduardo Undurraga, Brittany L Hagedorn, Raymond Cw Hutubessy","doi":"10.1136/bmjopen-2024-093645","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The COVID-19 pandemic highlighted the significance of mathematical modelling in decision-making and the limited capacity in many low-income and middle-income countries (LMICs). Thus, we studied how modelling supported policy decision-making processes in LMICs during the pandemic (details in a separate paper).We found that strong researcher-policymaker relationships and co-creation facilitated knowledge translation, while scepticism, political pressures and demand for quick outputs were barriers. We also noted that routine use of modelled evidence for decision-making requires sustained funding, capacity building for policy-facing modelling, robust data infrastructure and dedicated knowledge translation mechanisms.These lessons helped us co-create a framework and policy roadmap for improving the routine use of modelling evidence in public health decision-making. This communication paper describes the framework components and provides an implementation approach and evidence for the recommendations. The components include (1) funding, (2) capacity building, (3) data infrastructure, (4) knowledge translation platforms and (5) a culture of evidence use.</p><p><strong>Key arguments: </strong>Our framework integrates the supply (modellers) and demand (policymakers) sides and contextual factors that enable change. It is designed to be generic and disease-agnostic for any policy decision-making that modelling could support. It is not a decision-making tool but a guiding framework to help build capacity for evidence-based policy decision-making. The target audience is modellers and policymakers, but it could include other partners and implementers in public health decision-making.</p><p><strong>Conclusion: </strong>The framework was created through engagements with policymakers and researchers and reflects their real-life experiences during the COVID-19 pandemic. Its purpose is to guide stakeholders, especially in lower-resourced settings, in building modelling capacity, prioritising efforts and creating an enabling environment for using models as part of the evidence base to inform public health decision-making. To validate its robustness and impact, further work is needed to implement and evaluate this framework in diverse settings.</p>","PeriodicalId":9158,"journal":{"name":"BMJ Open","volume":"15 4","pages":"e093645"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973756/pdf/","citationCount":"0","resultStr":"{\"title\":\"Framework to guide the use of mathematical modelling in evidence-based policy decision-making.\",\"authors\":\"Jacquie Oliwa, Fatuma Hassan Guleid, Collins J Owek, Justinah Maluni, Juliet Jepkosgei, Jacinta Nzinga, Vincent O Were, So Yoon Sim, Abel W Walekhwa, Hannah Clapham, Saudamini Dabak, Sarin Kc, Liza Hadley, Eduardo Undurraga, Brittany L Hagedorn, Raymond Cw Hutubessy\",\"doi\":\"10.1136/bmjopen-2024-093645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The COVID-19 pandemic highlighted the significance of mathematical modelling in decision-making and the limited capacity in many low-income and middle-income countries (LMICs). Thus, we studied how modelling supported policy decision-making processes in LMICs during the pandemic (details in a separate paper).We found that strong researcher-policymaker relationships and co-creation facilitated knowledge translation, while scepticism, political pressures and demand for quick outputs were barriers. We also noted that routine use of modelled evidence for decision-making requires sustained funding, capacity building for policy-facing modelling, robust data infrastructure and dedicated knowledge translation mechanisms.These lessons helped us co-create a framework and policy roadmap for improving the routine use of modelling evidence in public health decision-making. This communication paper describes the framework components and provides an implementation approach and evidence for the recommendations. The components include (1) funding, (2) capacity building, (3) data infrastructure, (4) knowledge translation platforms and (5) a culture of evidence use.</p><p><strong>Key arguments: </strong>Our framework integrates the supply (modellers) and demand (policymakers) sides and contextual factors that enable change. It is designed to be generic and disease-agnostic for any policy decision-making that modelling could support. It is not a decision-making tool but a guiding framework to help build capacity for evidence-based policy decision-making. The target audience is modellers and policymakers, but it could include other partners and implementers in public health decision-making.</p><p><strong>Conclusion: </strong>The framework was created through engagements with policymakers and researchers and reflects their real-life experiences during the COVID-19 pandemic. Its purpose is to guide stakeholders, especially in lower-resourced settings, in building modelling capacity, prioritising efforts and creating an enabling environment for using models as part of the evidence base to inform public health decision-making. To validate its robustness and impact, further work is needed to implement and evaluate this framework in diverse settings.</p>\",\"PeriodicalId\":9158,\"journal\":{\"name\":\"BMJ Open\",\"volume\":\"15 4\",\"pages\":\"e093645\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973756/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjopen-2024-093645\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjopen-2024-093645","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framework to guide the use of mathematical modelling in evidence-based policy decision-making.

Introduction: The COVID-19 pandemic highlighted the significance of mathematical modelling in decision-making and the limited capacity in many low-income and middle-income countries (LMICs). Thus, we studied how modelling supported policy decision-making processes in LMICs during the pandemic (details in a separate paper).We found that strong researcher-policymaker relationships and co-creation facilitated knowledge translation, while scepticism, political pressures and demand for quick outputs were barriers. We also noted that routine use of modelled evidence for decision-making requires sustained funding, capacity building for policy-facing modelling, robust data infrastructure and dedicated knowledge translation mechanisms.These lessons helped us co-create a framework and policy roadmap for improving the routine use of modelling evidence in public health decision-making. This communication paper describes the framework components and provides an implementation approach and evidence for the recommendations. The components include (1) funding, (2) capacity building, (3) data infrastructure, (4) knowledge translation platforms and (5) a culture of evidence use.

Key arguments: Our framework integrates the supply (modellers) and demand (policymakers) sides and contextual factors that enable change. It is designed to be generic and disease-agnostic for any policy decision-making that modelling could support. It is not a decision-making tool but a guiding framework to help build capacity for evidence-based policy decision-making. The target audience is modellers and policymakers, but it could include other partners and implementers in public health decision-making.

Conclusion: The framework was created through engagements with policymakers and researchers and reflects their real-life experiences during the COVID-19 pandemic. Its purpose is to guide stakeholders, especially in lower-resourced settings, in building modelling capacity, prioritising efforts and creating an enabling environment for using models as part of the evidence base to inform public health decision-making. To validate its robustness and impact, further work is needed to implement and evaluate this framework in diverse settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMJ Open
BMJ Open MEDICINE, GENERAL & INTERNAL-
CiteScore
4.40
自引率
3.40%
发文量
4510
审稿时长
2-3 weeks
期刊介绍: BMJ Open is an online, open access journal, dedicated to publishing medical research from all disciplines and therapeutic areas. The journal publishes all research study types, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Publishing procedures are built around fully open peer review and continuous publication, publishing research online as soon as the article is ready.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信