Zucheng Luo , Shaoluan Zheng , Zhichao Hu , Pengfei Li , Junhao Zeng , Yao Lu , Mohyeddin Ali , Zijian Chen , Qi Wang , Fazhi Qi
{"title":"超声响应的牛磺酸脂纳米颗粒减轻氧化应激并促进巨噬细胞极化促进糖尿病伤口愈合。","authors":"Zucheng Luo , Shaoluan Zheng , Zhichao Hu , Pengfei Li , Junhao Zeng , Yao Lu , Mohyeddin Ali , Zijian Chen , Qi Wang , Fazhi Qi","doi":"10.1016/j.freeradbiomed.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wound healing presents a significant clinical challenge due to disrupted neuro-immune interactions. This study identifies the α7 nicotinic acetylcholine receptor (α7nAChR) as a key regulator of wound repair by linking cholinergic signaling to macrophage reprogramming. GEO analysis of diabetic foot ulcer (DFU) microenvironments revealed neuronal loss, M1 macrophage dominance, and chronic inflammation, all driven by impaired acetylcholine (ACh) secretion and α7nAChR inactivation. Mechanistically, taurine (TA) restored PC12 cell function under high glucose conditions by activating AMPK, alleviating oxidative and endoplasmic reticulum stress, and promoting ACh production. ACh activated macrophage α7nAChR, modulating M1/M2 polarization through JAK2/STAT3 activation and NF-κB suppression. To enhance TA bioavailability, ultrasound-responsive Ccr2-targeted TA nanoparticles (Ccr2@TA@LNP) were developed for site-specific delivery via Ccl2/Ccr2 chemotaxis. In diabetic neuropathy (DPN) mice, Ccr2@TA@LNP accelerated wound healing by increasing ACh levels, enhancing α7nAChR/CD206 expression, and reducing Ccl2-mediated inflammation. By integrating neuroprotection, macrophage reprogramming, and targeted nanotherapy, this study highlights TA as a multi-target agent that restores neuro-immune balance through the AMPK/α7nAChR/JAK2-STAT3 axis, offering a novel therapeutic strategy for diabetic wound treatment.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"233 ","pages":"Pages 302-316"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-responsive taurine lipid nanoparticles attenuate oxidative stress and promote macrophage polarization for diabetic wound healing\",\"authors\":\"Zucheng Luo , Shaoluan Zheng , Zhichao Hu , Pengfei Li , Junhao Zeng , Yao Lu , Mohyeddin Ali , Zijian Chen , Qi Wang , Fazhi Qi\",\"doi\":\"10.1016/j.freeradbiomed.2025.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic wound healing presents a significant clinical challenge due to disrupted neuro-immune interactions. This study identifies the α7 nicotinic acetylcholine receptor (α7nAChR) as a key regulator of wound repair by linking cholinergic signaling to macrophage reprogramming. GEO analysis of diabetic foot ulcer (DFU) microenvironments revealed neuronal loss, M1 macrophage dominance, and chronic inflammation, all driven by impaired acetylcholine (ACh) secretion and α7nAChR inactivation. Mechanistically, taurine (TA) restored PC12 cell function under high glucose conditions by activating AMPK, alleviating oxidative and endoplasmic reticulum stress, and promoting ACh production. ACh activated macrophage α7nAChR, modulating M1/M2 polarization through JAK2/STAT3 activation and NF-κB suppression. To enhance TA bioavailability, ultrasound-responsive Ccr2-targeted TA nanoparticles (Ccr2@TA@LNP) were developed for site-specific delivery via Ccl2/Ccr2 chemotaxis. In diabetic neuropathy (DPN) mice, Ccr2@TA@LNP accelerated wound healing by increasing ACh levels, enhancing α7nAChR/CD206 expression, and reducing Ccl2-mediated inflammation. By integrating neuroprotection, macrophage reprogramming, and targeted nanotherapy, this study highlights TA as a multi-target agent that restores neuro-immune balance through the AMPK/α7nAChR/JAK2-STAT3 axis, offering a novel therapeutic strategy for diabetic wound treatment.</div></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\"233 \",\"pages\":\"Pages 302-316\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584925002072\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925002072","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ultrasound-responsive taurine lipid nanoparticles attenuate oxidative stress and promote macrophage polarization for diabetic wound healing
Diabetic wound healing presents a significant clinical challenge due to disrupted neuro-immune interactions. This study identifies the α7 nicotinic acetylcholine receptor (α7nAChR) as a key regulator of wound repair by linking cholinergic signaling to macrophage reprogramming. GEO analysis of diabetic foot ulcer (DFU) microenvironments revealed neuronal loss, M1 macrophage dominance, and chronic inflammation, all driven by impaired acetylcholine (ACh) secretion and α7nAChR inactivation. Mechanistically, taurine (TA) restored PC12 cell function under high glucose conditions by activating AMPK, alleviating oxidative and endoplasmic reticulum stress, and promoting ACh production. ACh activated macrophage α7nAChR, modulating M1/M2 polarization through JAK2/STAT3 activation and NF-κB suppression. To enhance TA bioavailability, ultrasound-responsive Ccr2-targeted TA nanoparticles (Ccr2@TA@LNP) were developed for site-specific delivery via Ccl2/Ccr2 chemotaxis. In diabetic neuropathy (DPN) mice, Ccr2@TA@LNP accelerated wound healing by increasing ACh levels, enhancing α7nAChR/CD206 expression, and reducing Ccl2-mediated inflammation. By integrating neuroprotection, macrophage reprogramming, and targeted nanotherapy, this study highlights TA as a multi-target agent that restores neuro-immune balance through the AMPK/α7nAChR/JAK2-STAT3 axis, offering a novel therapeutic strategy for diabetic wound treatment.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.