mirTarCLASH:基于嵌合读实验的综合miRNA靶点数据库。

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Tzu-Hsien Yang, Xiang-Wei Li, Yuan-Han Lee, Shang-Yi Lu, Wei-Sheng Wu, Heng-Chi Lee
{"title":"mirTarCLASH:基于嵌合读实验的综合miRNA靶点数据库。","authors":"Tzu-Hsien Yang, Xiang-Wei Li, Yuan-Han Lee, Shang-Yi Lu, Wei-Sheng Wu, Heng-Chi Lee","doi":"10.1093/database/baaf023","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) can target messenger RNAs to control their degradation or translation repression effects. Therefore, identifying the target and binding sites of different miRNAs is essential for understanding miRNA functions. To investigate these interactions, researchers have employed the cross-linking, ligation, and sequencing of hybrids (CLASH-seq) and similar CLASH-like approaches to generate chimeric reads formed by miRNAs and their targeting segments. These chimeric reads allow for the direct extraction of both the miRNA-target gene pairs and their corresponding binding sites. Nevertheless, these studies lack user-friendly platforms for researchers to investigate these interactions efficiently, thus hindering scientists' ability to explore miRNA functions. To address this gap, we developed mirTarCLASH, a comprehensive database that deposits 502 061/322 707/224 452 unique hybrid reads from human/mouse/worm miRNA chimeric read-based experiments. In mirTarCLASH, the chimera analysis algorithm ChiRA and two distinct binding site inference tools, RNAup and miRanda, were adopted to facilitate the exploration of miRNA-target pairs derived from CLASH-like experiments. Compared with existing similar repositories, mirTarCLASH further enables several confidence evaluation filters with visualization functions for the extracted results. The results can be further refined based on the key properties of the miRNA targeting sites, including read depths, numbers of supporting algorithms, and cross-linking-induced mutations, to enhance confidence levels. In addition, these miRNA-binding sites are visually represented through an integrated transcript atlas. Finally, we demonstrated the biological applicability of mirTarCLASH via the well-characterized example interaction between cel-let-7-5p and lin-41 in Caenorhabditis elegans, showcasing the potential of mirTarCLASH to provide novel insights for subsequent experimental research designs. The constructed mirTarCLASH database is freely available at https://cosbi.ee.ncku.edu.tw/MirTarClash. Database URL: https://cosbi.ee.ncku.edu.tw/MirTarClash.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971479/pdf/","citationCount":"0","resultStr":"{\"title\":\"mirTarCLASH: a comprehensive miRNA target database based on chimeric read-based experiments.\",\"authors\":\"Tzu-Hsien Yang, Xiang-Wei Li, Yuan-Han Lee, Shang-Yi Lu, Wei-Sheng Wu, Heng-Chi Lee\",\"doi\":\"10.1093/database/baaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) can target messenger RNAs to control their degradation or translation repression effects. Therefore, identifying the target and binding sites of different miRNAs is essential for understanding miRNA functions. To investigate these interactions, researchers have employed the cross-linking, ligation, and sequencing of hybrids (CLASH-seq) and similar CLASH-like approaches to generate chimeric reads formed by miRNAs and their targeting segments. These chimeric reads allow for the direct extraction of both the miRNA-target gene pairs and their corresponding binding sites. Nevertheless, these studies lack user-friendly platforms for researchers to investigate these interactions efficiently, thus hindering scientists' ability to explore miRNA functions. To address this gap, we developed mirTarCLASH, a comprehensive database that deposits 502 061/322 707/224 452 unique hybrid reads from human/mouse/worm miRNA chimeric read-based experiments. In mirTarCLASH, the chimera analysis algorithm ChiRA and two distinct binding site inference tools, RNAup and miRanda, were adopted to facilitate the exploration of miRNA-target pairs derived from CLASH-like experiments. Compared with existing similar repositories, mirTarCLASH further enables several confidence evaluation filters with visualization functions for the extracted results. The results can be further refined based on the key properties of the miRNA targeting sites, including read depths, numbers of supporting algorithms, and cross-linking-induced mutations, to enhance confidence levels. In addition, these miRNA-binding sites are visually represented through an integrated transcript atlas. Finally, we demonstrated the biological applicability of mirTarCLASH via the well-characterized example interaction between cel-let-7-5p and lin-41 in Caenorhabditis elegans, showcasing the potential of mirTarCLASH to provide novel insights for subsequent experimental research designs. The constructed mirTarCLASH database is freely available at https://cosbi.ee.ncku.edu.tw/MirTarClash. Database URL: https://cosbi.ee.ncku.edu.tw/MirTarClash.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baaf023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

MicroRNAs (miRNAs)可以靶向信使rna来控制其降解或翻译抑制作用。因此,确定不同miRNA的靶点和结合位点对于了解miRNA的功能至关重要。为了研究这些相互作用,研究人员采用了杂交体的交联、连接和测序(collision -seq)以及类似的类碰撞方法来生成由mirna及其靶向片段形成的嵌合读段。这些嵌合读取允许直接提取mirna靶基因对及其相应的结合位点。然而,这些研究缺乏用户友好的平台供研究人员有效地研究这些相互作用,从而阻碍了科学家探索miRNA功能的能力。为了解决这一空白,我们开发了mirTarCLASH,这是一个综合数据库,包含了来自人类/小鼠/蠕虫miRNA嵌合读取实验的502 061/322 707/224 452个独特的杂交读取。在mirTarCLASH中,我们采用了嵌合体分析算法ChiRA和两种不同的结合位点推断工具RNAup和miRanda,以方便探索来自于类clash实验的mirna -靶对。与现有的类似存储库相比,mirTarCLASH进一步为提取的结果提供了多个具有可视化功能的置信度评估过滤器。结果可以根据miRNA靶向位点的关键特性(包括读取深度、支持算法的数量和交联诱导突变)进一步完善,以提高置信度。此外,这些mirna结合位点通过整合的转录图谱直观地表示出来。最后,我们通过在秀丽隐杆线虫中细胞-let-7-5p和lin-41之间的典型相互作用证明了mirTarCLASH的生物学适用性,展示了mirTarCLASH为后续实验研究设计提供新见解的潜力。构建的mirTarCLASH数据库可以在https://cosbi.ee.ncku.edu.tw/MirTarClash上免费获得。数据库地址:https://cosbi.ee.ncku.edu.tw/MirTarClash。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
mirTarCLASH: a comprehensive miRNA target database based on chimeric read-based experiments.

MicroRNAs (miRNAs) can target messenger RNAs to control their degradation or translation repression effects. Therefore, identifying the target and binding sites of different miRNAs is essential for understanding miRNA functions. To investigate these interactions, researchers have employed the cross-linking, ligation, and sequencing of hybrids (CLASH-seq) and similar CLASH-like approaches to generate chimeric reads formed by miRNAs and their targeting segments. These chimeric reads allow for the direct extraction of both the miRNA-target gene pairs and their corresponding binding sites. Nevertheless, these studies lack user-friendly platforms for researchers to investigate these interactions efficiently, thus hindering scientists' ability to explore miRNA functions. To address this gap, we developed mirTarCLASH, a comprehensive database that deposits 502 061/322 707/224 452 unique hybrid reads from human/mouse/worm miRNA chimeric read-based experiments. In mirTarCLASH, the chimera analysis algorithm ChiRA and two distinct binding site inference tools, RNAup and miRanda, were adopted to facilitate the exploration of miRNA-target pairs derived from CLASH-like experiments. Compared with existing similar repositories, mirTarCLASH further enables several confidence evaluation filters with visualization functions for the extracted results. The results can be further refined based on the key properties of the miRNA targeting sites, including read depths, numbers of supporting algorithms, and cross-linking-induced mutations, to enhance confidence levels. In addition, these miRNA-binding sites are visually represented through an integrated transcript atlas. Finally, we demonstrated the biological applicability of mirTarCLASH via the well-characterized example interaction between cel-let-7-5p and lin-41 in Caenorhabditis elegans, showcasing the potential of mirTarCLASH to provide novel insights for subsequent experimental research designs. The constructed mirTarCLASH database is freely available at https://cosbi.ee.ncku.edu.tw/MirTarClash. Database URL: https://cosbi.ee.ncku.edu.tw/MirTarClash.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信