Hongli Chen, Na Li, Na Liu, Hongyu Zhu, Chunyan Ma, Yutong Ye, Xinyu Shi, Guoshuai Luo, Xiaoxi Dong, Tao Tan, Xunbin Wei, Huijuan Yin
{"title":"光生物调节调节线粒体能量代谢,改善阿尔茨海默病 APP/PS1 模型的神经损伤。","authors":"Hongli Chen, Na Li, Na Liu, Hongyu Zhu, Chunyan Ma, Yutong Ye, Xinyu Shi, Guoshuai Luo, Xiaoxi Dong, Tao Tan, Xunbin Wei, Huijuan Yin","doi":"10.1186/s13195-025-01714-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a neurodegenerative disease. Amyloid β-protein (Aβ) is one of the key pathological features of AD, which is cytotoxic and can damage neurons, thereby causing cognitive dysfunction. Photobiomodulation (PBM) is a non-invasive physical therapy that induces changes in the intrinsic mechanisms of cells and tissues through low-power light exposure. Although PBM has been employed in the treatment of AD, the effect and precise mechanism of PBM on AD-induced neurological damage are still unclear.</p><p><strong>Methods: </strong>In vivo experiments, PBM (808 nm, 20 mW/cm<sup>2</sup>) was used to continuously interfere with APP/PS1 mice for 6 weeks, and then their cognitive function and AD pathological changes were evaluated. In vitro experiments, lipopolysaccharide (LPS) was used to induce microglia to model inflammation, and the effect of PBM treatment on microglia polarization status and phagocytic Aβ ability was evaluated. Hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP) was used to study the effect of PBM treatment on mitochondrial energy metabolism in microglia.</p><p><strong>Results: </strong>PBM further ameliorates AD-induced cognitive impairment by alleviating neuroinflammation and neuronal apoptosis, thereby attenuating nerve damage. In addition, PBM can also reduce neuroinflammation by promoting microglial anti-inflammatory phenotypic polarization; Promotes Aβ clearance by enhancing the ability of microglia to engulf Aβ. Among them, PBM regulates microglial polarization and inhibits neuronal apoptosis, which may be related to its regulation of mitochondrial energy metabolism, promotion of oxidative phosphorylation, and inhibition of glycolysis.</p><p><strong>Conclusion: </strong>PBM regulates neuroinflammatory response and inhibits neuronal apoptosis, thereby repairing Aβ-induced neuronal damage and cognitive dysfunction. Mitochondrial energy metabolism plays an important role in PBM in improving nerve injury in AD mice. This study provides theoretical support for the subsequent application of PBM in the treatment of AD.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"72"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photobiomodulation modulates mitochondrial energy metabolism and ameliorates neurological damage in an APP/PS1 mousmodel of Alzheimer's disease.\",\"authors\":\"Hongli Chen, Na Li, Na Liu, Hongyu Zhu, Chunyan Ma, Yutong Ye, Xinyu Shi, Guoshuai Luo, Xiaoxi Dong, Tao Tan, Xunbin Wei, Huijuan Yin\",\"doi\":\"10.1186/s13195-025-01714-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer's disease (AD) is a neurodegenerative disease. Amyloid β-protein (Aβ) is one of the key pathological features of AD, which is cytotoxic and can damage neurons, thereby causing cognitive dysfunction. Photobiomodulation (PBM) is a non-invasive physical therapy that induces changes in the intrinsic mechanisms of cells and tissues through low-power light exposure. Although PBM has been employed in the treatment of AD, the effect and precise mechanism of PBM on AD-induced neurological damage are still unclear.</p><p><strong>Methods: </strong>In vivo experiments, PBM (808 nm, 20 mW/cm<sup>2</sup>) was used to continuously interfere with APP/PS1 mice for 6 weeks, and then their cognitive function and AD pathological changes were evaluated. In vitro experiments, lipopolysaccharide (LPS) was used to induce microglia to model inflammation, and the effect of PBM treatment on microglia polarization status and phagocytic Aβ ability was evaluated. Hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP) was used to study the effect of PBM treatment on mitochondrial energy metabolism in microglia.</p><p><strong>Results: </strong>PBM further ameliorates AD-induced cognitive impairment by alleviating neuroinflammation and neuronal apoptosis, thereby attenuating nerve damage. In addition, PBM can also reduce neuroinflammation by promoting microglial anti-inflammatory phenotypic polarization; Promotes Aβ clearance by enhancing the ability of microglia to engulf Aβ. Among them, PBM regulates microglial polarization and inhibits neuronal apoptosis, which may be related to its regulation of mitochondrial energy metabolism, promotion of oxidative phosphorylation, and inhibition of glycolysis.</p><p><strong>Conclusion: </strong>PBM regulates neuroinflammatory response and inhibits neuronal apoptosis, thereby repairing Aβ-induced neuronal damage and cognitive dysfunction. Mitochondrial energy metabolism plays an important role in PBM in improving nerve injury in AD mice. This study provides theoretical support for the subsequent application of PBM in the treatment of AD.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"17 1\",\"pages\":\"72\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-025-01714-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-025-01714-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Photobiomodulation modulates mitochondrial energy metabolism and ameliorates neurological damage in an APP/PS1 mousmodel of Alzheimer's disease.
Background: Alzheimer's disease (AD) is a neurodegenerative disease. Amyloid β-protein (Aβ) is one of the key pathological features of AD, which is cytotoxic and can damage neurons, thereby causing cognitive dysfunction. Photobiomodulation (PBM) is a non-invasive physical therapy that induces changes in the intrinsic mechanisms of cells and tissues through low-power light exposure. Although PBM has been employed in the treatment of AD, the effect and precise mechanism of PBM on AD-induced neurological damage are still unclear.
Methods: In vivo experiments, PBM (808 nm, 20 mW/cm2) was used to continuously interfere with APP/PS1 mice for 6 weeks, and then their cognitive function and AD pathological changes were evaluated. In vitro experiments, lipopolysaccharide (LPS) was used to induce microglia to model inflammation, and the effect of PBM treatment on microglia polarization status and phagocytic Aβ ability was evaluated. Hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP) was used to study the effect of PBM treatment on mitochondrial energy metabolism in microglia.
Results: PBM further ameliorates AD-induced cognitive impairment by alleviating neuroinflammation and neuronal apoptosis, thereby attenuating nerve damage. In addition, PBM can also reduce neuroinflammation by promoting microglial anti-inflammatory phenotypic polarization; Promotes Aβ clearance by enhancing the ability of microglia to engulf Aβ. Among them, PBM regulates microglial polarization and inhibits neuronal apoptosis, which may be related to its regulation of mitochondrial energy metabolism, promotion of oxidative phosphorylation, and inhibition of glycolysis.
Conclusion: PBM regulates neuroinflammatory response and inhibits neuronal apoptosis, thereby repairing Aβ-induced neuronal damage and cognitive dysfunction. Mitochondrial energy metabolism plays an important role in PBM in improving nerve injury in AD mice. This study provides theoretical support for the subsequent application of PBM in the treatment of AD.
期刊介绍:
Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.