面向四足机器人的定制凸出结构步态传感器

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junyi Ren, Zuqing Yuan, Bin Sun, Guozhen Shen
{"title":"面向四足机器人的定制凸出结构步态传感器","authors":"Junyi Ren,&nbsp;Zuqing Yuan,&nbsp;Bin Sun,&nbsp;Guozhen Shen","doi":"10.1007/s42765-024-00497-3","DOIUrl":null,"url":null,"abstract":"<div><p>Stable data acquisition and accurate recognition of motion states are critical for biomimetic robots operating in complex environments. This study proposes flexible gait sensors that can detect pressure and vibration for quadruped robots. These sensors are fabricated using a template-confined electrospinning technique, allowing for direct customization of protruding structures. The developed gait sensor exhibits a maximum capacitive sensitivity of 1.237 kPa<sup>-1</sup>, a detection extending range up to 1000 kPa, and a fast response time of 5 ms. Leveraging their lightweight nature, these sensors can detect vibrations at various weight loads, frequencies, and amplitudes. Moreover, a recognition process combining these gait sensors with deep learning techniques for quadruped robot applications has been studied. It demonstrates the capability of the sensors to monitor diverse locomotion poses and states of the robot, achieving impressive accuracies of up to 97.50% for gait recognition and 98.04% for abnormal disturbances. This research offers potential applications in developing electronic skins for robots and provides promising solutions for enhancing robot performance in challenging environments.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 2","pages":"501 - 512"},"PeriodicalIF":17.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gait Sensors with Customized Protruding Structures for Quadruped Robot Applications\",\"authors\":\"Junyi Ren,&nbsp;Zuqing Yuan,&nbsp;Bin Sun,&nbsp;Guozhen Shen\",\"doi\":\"10.1007/s42765-024-00497-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stable data acquisition and accurate recognition of motion states are critical for biomimetic robots operating in complex environments. This study proposes flexible gait sensors that can detect pressure and vibration for quadruped robots. These sensors are fabricated using a template-confined electrospinning technique, allowing for direct customization of protruding structures. The developed gait sensor exhibits a maximum capacitive sensitivity of 1.237 kPa<sup>-1</sup>, a detection extending range up to 1000 kPa, and a fast response time of 5 ms. Leveraging their lightweight nature, these sensors can detect vibrations at various weight loads, frequencies, and amplitudes. Moreover, a recognition process combining these gait sensors with deep learning techniques for quadruped robot applications has been studied. It demonstrates the capability of the sensors to monitor diverse locomotion poses and states of the robot, achieving impressive accuracies of up to 97.50% for gait recognition and 98.04% for abnormal disturbances. This research offers potential applications in developing electronic skins for robots and provides promising solutions for enhancing robot performance in challenging environments.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 2\",\"pages\":\"501 - 512\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00497-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00497-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

稳定的数据采集和准确的运动状态识别是仿生机器人在复杂环境中工作的关键。本研究提出了一种能够检测四足机器人压力和振动的柔性步态传感器。这些传感器是使用模板限制静电纺丝技术制造的,允许直接定制突出的结构。所研制的步态传感器的最大电容灵敏度为1.237 kPa-1,检测范围可达1000 kPa,响应时间为5 ms。利用其轻量化特性,这些传感器可以检测各种重量负载、频率和振幅下的振动。此外,研究了将这些步态传感器与深度学习技术相结合的四足机器人识别过程。它展示了传感器监测机器人不同运动姿势和状态的能力,步态识别的准确率高达97.50%,异常干扰的准确率高达98.04%。这项研究为开发机器人电子皮肤提供了潜在的应用,并为提高机器人在挑战性环境中的性能提供了有希望的解决方案。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait Sensors with Customized Protruding Structures for Quadruped Robot Applications

Stable data acquisition and accurate recognition of motion states are critical for biomimetic robots operating in complex environments. This study proposes flexible gait sensors that can detect pressure and vibration for quadruped robots. These sensors are fabricated using a template-confined electrospinning technique, allowing for direct customization of protruding structures. The developed gait sensor exhibits a maximum capacitive sensitivity of 1.237 kPa-1, a detection extending range up to 1000 kPa, and a fast response time of 5 ms. Leveraging their lightweight nature, these sensors can detect vibrations at various weight loads, frequencies, and amplitudes. Moreover, a recognition process combining these gait sensors with deep learning techniques for quadruped robot applications has been studied. It demonstrates the capability of the sensors to monitor diverse locomotion poses and states of the robot, achieving impressive accuracies of up to 97.50% for gait recognition and 98.04% for abnormal disturbances. This research offers potential applications in developing electronic skins for robots and provides promising solutions for enhancing robot performance in challenging environments.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信