E-GAIL:有效的GAIL,包括负面腐败和对机器人操作的长期奖励

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiayi Tan, Gang Chen, Zeyuan Huang, Haofeng Liu, Marcelo H. Ang Jr
{"title":"E-GAIL:有效的GAIL,包括负面腐败和对机器人操作的长期奖励","authors":"Jiayi Tan,&nbsp;Gang Chen,&nbsp;Zeyuan Huang,&nbsp;Haofeng Liu,&nbsp;Marcelo H. Ang Jr","doi":"10.1007/s10489-025-06335-2","DOIUrl":null,"url":null,"abstract":"<div><p>Learning an effective manipulation policy with high efficiency in robotics continues to be a significant challenge. In this paper, we propose E-GAIL, which aims to learn manipulation policies efficiently from a limited set of demonstrations with negative corruption and long-term rewards under the framework of GAIL. Specifically, we propose two techniques: 1) Utilizing both short-term and long-term observations to offer additional rewards for training, accelerating convergence. 2) Incorporating negative actions into generated trajectories for corruption to improve data effectiveness and increase success rates. E-GAIL achieves a 25% improvement in success rates across multiple manipulation tasks, requiring 70% fewer episodes for policy convergence, highlighting its efficiency with limited demonstrations. Our video is available at https://youtu.be/bIDfOjYcY54.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06335-2.pdf","citationCount":"0","resultStr":"{\"title\":\"E-GAIL: efficient GAIL through including negative corruption and long-term rewards for robotic manipulations\",\"authors\":\"Jiayi Tan,&nbsp;Gang Chen,&nbsp;Zeyuan Huang,&nbsp;Haofeng Liu,&nbsp;Marcelo H. Ang Jr\",\"doi\":\"10.1007/s10489-025-06335-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Learning an effective manipulation policy with high efficiency in robotics continues to be a significant challenge. In this paper, we propose E-GAIL, which aims to learn manipulation policies efficiently from a limited set of demonstrations with negative corruption and long-term rewards under the framework of GAIL. Specifically, we propose two techniques: 1) Utilizing both short-term and long-term observations to offer additional rewards for training, accelerating convergence. 2) Incorporating negative actions into generated trajectories for corruption to improve data effectiveness and increase success rates. E-GAIL achieves a 25% improvement in success rates across multiple manipulation tasks, requiring 70% fewer episodes for policy convergence, highlighting its efficiency with limited demonstrations. Our video is available at https://youtu.be/bIDfOjYcY54.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-025-06335-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06335-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06335-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在机器人技术中,学习一种高效的操作策略仍然是一个重大的挑战。在本文中,我们提出了E-GAIL,其目的是在GAIL框架下,从一组有限的具有负腐败和长期奖励的演示中有效地学习操纵政策。具体来说,我们提出了两种技术:1)利用短期和长期观察为训练提供额外的奖励,加速收敛。2)将负面行为纳入生成的腐败轨迹,以提高数据有效性并提高成功率。E-GAIL在多个操作任务中的成功率提高了25%,政策收敛所需的集数减少了70%,在有限的演示中突出了其效率。我们的视频可以在https://youtu.be/bIDfOjYcY54上观看。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-GAIL: efficient GAIL through including negative corruption and long-term rewards for robotic manipulations

Learning an effective manipulation policy with high efficiency in robotics continues to be a significant challenge. In this paper, we propose E-GAIL, which aims to learn manipulation policies efficiently from a limited set of demonstrations with negative corruption and long-term rewards under the framework of GAIL. Specifically, we propose two techniques: 1) Utilizing both short-term and long-term observations to offer additional rewards for training, accelerating convergence. 2) Incorporating negative actions into generated trajectories for corruption to improve data effectiveness and increase success rates. E-GAIL achieves a 25% improvement in success rates across multiple manipulation tasks, requiring 70% fewer episodes for policy convergence, highlighting its efficiency with limited demonstrations. Our video is available at https://youtu.be/bIDfOjYcY54.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信