硫杂原子对沥青质的溶解度和聚集性的研究:分子动力学模拟

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ulviyya J. Yolchuyeva, Orhan R. Abbasov, Rena A. Jafarova, Gunay A. Hajiyeva, Ravan A. Rahimov, Nazli A. Mehdiyeva, Elnur E. Baloglanov
{"title":"硫杂原子对沥青质的溶解度和聚集性的研究:分子动力学模拟","authors":"Ulviyya J. Yolchuyeva,&nbsp;Orhan R. Abbasov,&nbsp;Rena A. Jafarova,&nbsp;Gunay A. Hajiyeva,&nbsp;Ravan A. Rahimov,&nbsp;Nazli A. Mehdiyeva,&nbsp;Elnur E. Baloglanov","doi":"10.1007/s00894-025-06358-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This study describes the molecular dynamics (MD) simulations to investigate the effects of sulfur atom position on the solubility and aggregation properties of asphaltenes extracted from Zaghli crude oil (East Azerbaijan). Two different asphaltene models were studied, i.e., A1 with sulfur in the aromatic ring and A2 with sulfur in the aliphatic side chain. The radial distribution function (RDF) analysis revealed significant differences in aggregation trends. A1 exhibited rapid aggregation in both solvents used in the experiments, as evidenced by a significant decrease in the radius of gyration from 0.6 to 0.4 Å in octane and from 0.8 to 0.5 Å in xylene. In contrast, A2 showed increased solubility; especially in xylene with a marked increase in the radius of gyration from 0.5 to 2 Å. Furthermore, the energy analysis confirmed these results, i.e., A2 exhibited a higher total energy (451.16 kcal/mol) than A1 (221.28 kcal/mol); indicating a more energetically favorable and less aggregated state of A2. These computational results open up new possibilities for understanding the critical role of the sulfur atom position in the asphaltene structure on its aggregation propensity, which can be used to prevent asphaltene-related problems in the petroleum industry. The work is very useful in the oil industry for enhancing oil production by studying asphaltene solubility and aggregation.</p><h3>Methods</h3><p>MD simulations were performed using the COMPASS force field and Material Studio V.6 2017 software to evaluate the solubility of asphaltenes in octane and xylene solvents. Geometric optimization was carried out to address unstable interactions, with periodic boundary conditions applied. Simulations were conducted in the NVT ensemble at 298 K and 1 atm pressure, using a time step of 1 fs, a Nose thermostat for temperature control, and a Berendsen thermostat for pressure control. RDF analysis was utilized to examine the behavior of two distinct asphaltene models, which differed in the positioning of the sulfur atom, in the solvents. The total energy contributions, including van der Waals and electrostatic interactions, were also analyzed.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of asphaltene solubility and aggregation due to sulfur heteroatoms: molecular dynamics simulation\",\"authors\":\"Ulviyya J. Yolchuyeva,&nbsp;Orhan R. Abbasov,&nbsp;Rena A. Jafarova,&nbsp;Gunay A. Hajiyeva,&nbsp;Ravan A. Rahimov,&nbsp;Nazli A. Mehdiyeva,&nbsp;Elnur E. Baloglanov\",\"doi\":\"10.1007/s00894-025-06358-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>This study describes the molecular dynamics (MD) simulations to investigate the effects of sulfur atom position on the solubility and aggregation properties of asphaltenes extracted from Zaghli crude oil (East Azerbaijan). Two different asphaltene models were studied, i.e., A1 with sulfur in the aromatic ring and A2 with sulfur in the aliphatic side chain. The radial distribution function (RDF) analysis revealed significant differences in aggregation trends. A1 exhibited rapid aggregation in both solvents used in the experiments, as evidenced by a significant decrease in the radius of gyration from 0.6 to 0.4 Å in octane and from 0.8 to 0.5 Å in xylene. In contrast, A2 showed increased solubility; especially in xylene with a marked increase in the radius of gyration from 0.5 to 2 Å. Furthermore, the energy analysis confirmed these results, i.e., A2 exhibited a higher total energy (451.16 kcal/mol) than A1 (221.28 kcal/mol); indicating a more energetically favorable and less aggregated state of A2. These computational results open up new possibilities for understanding the critical role of the sulfur atom position in the asphaltene structure on its aggregation propensity, which can be used to prevent asphaltene-related problems in the petroleum industry. The work is very useful in the oil industry for enhancing oil production by studying asphaltene solubility and aggregation.</p><h3>Methods</h3><p>MD simulations were performed using the COMPASS force field and Material Studio V.6 2017 software to evaluate the solubility of asphaltenes in octane and xylene solvents. Geometric optimization was carried out to address unstable interactions, with periodic boundary conditions applied. Simulations were conducted in the NVT ensemble at 298 K and 1 atm pressure, using a time step of 1 fs, a Nose thermostat for temperature control, and a Berendsen thermostat for pressure control. RDF analysis was utilized to examine the behavior of two distinct asphaltene models, which differed in the positioning of the sulfur atom, in the solvents. The total energy contributions, including van der Waals and electrostatic interactions, were also analyzed.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-025-06358-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06358-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究描述了分子动力学(MD)模拟,以研究硫原子位置对从Zaghli原油(东阿塞拜疆)中提取的沥青质的溶解性和聚集性的影响。研究了两种不同的沥青质模型,即A1在芳香环上含硫,A2在脂肪侧链上含硫。径向分布函数(RDF)分析显示,在聚集趋势上存在显著差异。A1在实验中使用的两种溶剂中都表现出快速聚集,证明在辛烷值中从0.6到0.4 Å的旋转半径和在二甲苯中从0.8到0.5 Å的旋转半径显著减小。相反,A2的溶解度增加;特别是在二甲苯中,旋转半径从0.5显著增加到2 Å。此外,能量分析证实了上述结果,即A2的总能量(451.16 kcal/mol)高于A1 (221.28 kcal/mol);表明A2在能量上更有利,聚集程度更低。这些计算结果为理解沥青质结构中硫原子位置对其聚集倾向的关键作用开辟了新的可能性,可用于防止石油工业中与沥青质相关的问题。研究沥青质的溶解度和聚集性对石油工业提高石油产量具有重要意义。方法采用COMPASS力场和Material Studio V.6 2017软件进行模拟,评价沥青质在辛烷和二甲苯溶剂中的溶解度。采用周期边界条件,对不稳定相互作用进行几何优化。在298 K和1 atm压力下的NVT集成中进行了模拟,时间步长为1 fs,使用Nose恒温器进行温度控制,使用Berendsen恒温器进行压力控制。利用RDF分析来检查两种不同沥青质模型的行为,这两种沥青质模型在溶剂中硫原子的位置不同。还分析了包括范德华和静电相互作用在内的总能量贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A study of asphaltene solubility and aggregation due to sulfur heteroatoms: molecular dynamics simulation

A study of asphaltene solubility and aggregation due to sulfur heteroatoms: molecular dynamics simulation

Context

This study describes the molecular dynamics (MD) simulations to investigate the effects of sulfur atom position on the solubility and aggregation properties of asphaltenes extracted from Zaghli crude oil (East Azerbaijan). Two different asphaltene models were studied, i.e., A1 with sulfur in the aromatic ring and A2 with sulfur in the aliphatic side chain. The radial distribution function (RDF) analysis revealed significant differences in aggregation trends. A1 exhibited rapid aggregation in both solvents used in the experiments, as evidenced by a significant decrease in the radius of gyration from 0.6 to 0.4 Å in octane and from 0.8 to 0.5 Å in xylene. In contrast, A2 showed increased solubility; especially in xylene with a marked increase in the radius of gyration from 0.5 to 2 Å. Furthermore, the energy analysis confirmed these results, i.e., A2 exhibited a higher total energy (451.16 kcal/mol) than A1 (221.28 kcal/mol); indicating a more energetically favorable and less aggregated state of A2. These computational results open up new possibilities for understanding the critical role of the sulfur atom position in the asphaltene structure on its aggregation propensity, which can be used to prevent asphaltene-related problems in the petroleum industry. The work is very useful in the oil industry for enhancing oil production by studying asphaltene solubility and aggregation.

Methods

MD simulations were performed using the COMPASS force field and Material Studio V.6 2017 software to evaluate the solubility of asphaltenes in octane and xylene solvents. Geometric optimization was carried out to address unstable interactions, with periodic boundary conditions applied. Simulations were conducted in the NVT ensemble at 298 K and 1 atm pressure, using a time step of 1 fs, a Nose thermostat for temperature control, and a Berendsen thermostat for pressure control. RDF analysis was utilized to examine the behavior of two distinct asphaltene models, which differed in the positioning of the sulfur atom, in the solvents. The total energy contributions, including van der Waals and electrostatic interactions, were also analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信