{"title":"没有地面真实,能否提升移动众测数据质量?","authors":"Jiajie Li;Bo Gu;Shimin Gong;Zhou Su;Mohsen Guizani","doi":"10.1109/TMC.2025.3526277","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"4451-4465"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth?\",\"authors\":\"Jiajie Li;Bo Gu;Shimin Gong;Zhou Su;Mohsen Guizani\",\"doi\":\"10.1109/TMC.2025.3526277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 5\",\"pages\":\"4451-4465\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829728/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829728/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth?
Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.