没有地面真实,能否提升移动众测数据质量?

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiajie Li;Bo Gu;Shimin Gong;Zhou Su;Mohsen Guizani
{"title":"没有地面真实,能否提升移动众测数据质量?","authors":"Jiajie Li;Bo Gu;Shimin Gong;Zhou Su;Mohsen Guizani","doi":"10.1109/TMC.2025.3526277","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"4451-4465"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth?\",\"authors\":\"Jiajie Li;Bo Gu;Shimin Gong;Zhou Su;Mohsen Guizani\",\"doi\":\"10.1109/TMC.2025.3526277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 5\",\"pages\":\"4451-4465\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829728/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829728/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

移动群体感知(MCS)已经成为一个跨领域的突出趋势。然而,确保移动用户提交的传感数据的质量仍然是一个复杂而具有挑战性的问题。为了应对这一挑战,需要一种先进的方法来检测低质量的传感数据,并识别可能破坏MCS系统正常运行的恶意mu。因此,本文提出了一个基于预测和声誉的真相发现(PRBTD)框架,该框架可以在感知任务中分离低质量数据和高质量数据。首先,我们应用了一个以相关性为中心的时空变压器网络,该网络从历史传感数据中学习,并预测了MUs提交的数据的地面真实性。然而,由于训练历史数据中的噪声和传感数据中的突发值,预测结果可能不准确。为了解决这个问题,我们使用从预测结果中学习的传感数据之间的含义来评估数据的质量,这些数据是稳定的,受不准确预测的影响较小。最后,我们设计了一个基于声誉的真相发现(TD)模块,用于识别低质量数据及其含义。基于微处理器提交的传感数据,PRBTD能够剔除噪声较大的数据,以较高的准确率识别出恶意微处理器。大量的实验结果表明,PRBTD方法在识别精度和数据质量增强方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth?
Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信