Kyoungtae Lee , Rahul Lall , Michel M. Maharbiz , Mekhail Anwar
{"title":"一种基于0.05 mm3二极管的单带电粒子实时辐射探测器,用于电子放疗","authors":"Kyoungtae Lee , Rahul Lall , Michel M. Maharbiz , Mekhail Anwar","doi":"10.1016/j.phro.2025.100762","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time radiation monitoring at the single-particle level is an unmet need for electron radiotherapy, especially for dose deposition to targets in motion or critical OARs. We have developed a first-in-class CMOS-based 0.05 mm<sup>3</sup> single electron sensitive detector. The chiplet integrates all the requisite electronics. The functionality of the system is verified under 6 and 9 MeV clinical electron beams. Percentage depth vs. pulse-width curves for 6 and 9 MeV beams are measured and verified using Monte-Carlo simulations. The proposed system has the potential to enhance the electron radiotherapy quality and safety, providing real-time dosimetry from multiple sites simultaneously.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100762"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.05 mm3 diode-based single charged-particle real-time radiation detector for electron radiotherapy\",\"authors\":\"Kyoungtae Lee , Rahul Lall , Michel M. Maharbiz , Mekhail Anwar\",\"doi\":\"10.1016/j.phro.2025.100762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time radiation monitoring at the single-particle level is an unmet need for electron radiotherapy, especially for dose deposition to targets in motion or critical OARs. We have developed a first-in-class CMOS-based 0.05 mm<sup>3</sup> single electron sensitive detector. The chiplet integrates all the requisite electronics. The functionality of the system is verified under 6 and 9 MeV clinical electron beams. Percentage depth vs. pulse-width curves for 6 and 9 MeV beams are measured and verified using Monte-Carlo simulations. The proposed system has the potential to enhance the electron radiotherapy quality and safety, providing real-time dosimetry from multiple sites simultaneously.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"34 \",\"pages\":\"Article 100762\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625000673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
A 0.05 mm3 diode-based single charged-particle real-time radiation detector for electron radiotherapy
Real-time radiation monitoring at the single-particle level is an unmet need for electron radiotherapy, especially for dose deposition to targets in motion or critical OARs. We have developed a first-in-class CMOS-based 0.05 mm3 single electron sensitive detector. The chiplet integrates all the requisite electronics. The functionality of the system is verified under 6 and 9 MeV clinical electron beams. Percentage depth vs. pulse-width curves for 6 and 9 MeV beams are measured and verified using Monte-Carlo simulations. The proposed system has the potential to enhance the electron radiotherapy quality and safety, providing real-time dosimetry from multiple sites simultaneously.