一类新的painlevlev可积五阶方程的多重孤子解及其它科学解

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdul-Majid Wazwaz
{"title":"一类新的painlevlev可积五阶方程的多重孤子解及其它科学解","authors":"Abdul-Majid Wazwaz","doi":"10.1016/j.chaos.2025.116307","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we introduce a new Painlevé integrable fifth–order equation. We employ the Painlevé integrability test to examine the compatibility conditions for this newly established system. We use the dispersion relation, the phase shift, and the Hirota’s method to derive multiple soliton solutions for this equation. We also derive several other solutions of distinct physical structures. The obtained results enrich the KdV system and explore valuable analysis for the solitary wave phenomena.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116307"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple soliton solutions and other scientific solutions for a new Painlevé integrable fifth-order equation\",\"authors\":\"Abdul-Majid Wazwaz\",\"doi\":\"10.1016/j.chaos.2025.116307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we introduce a new Painlevé integrable fifth–order equation. We employ the Painlevé integrability test to examine the compatibility conditions for this newly established system. We use the dispersion relation, the phase shift, and the Hirota’s method to derive multiple soliton solutions for this equation. We also derive several other solutions of distinct physical structures. The obtained results enrich the KdV system and explore valuable analysis for the solitary wave phenomena.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"196 \",\"pages\":\"Article 116307\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925003200\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003200","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一个新的painlevlev可积五阶方程。我们采用painlev可积性检验来检验这个新建立的系统的相容性条件。我们利用色散关系、相移和Hirota的方法推导出该方程的多孤子解。我们还推导了其他几种不同物理结构的解。所得结果丰富了KdV系统,并对孤立波现象进行了有价值的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple soliton solutions and other scientific solutions for a new Painlevé integrable fifth-order equation
In this work, we introduce a new Painlevé integrable fifth–order equation. We employ the Painlevé integrability test to examine the compatibility conditions for this newly established system. We use the dispersion relation, the phase shift, and the Hirota’s method to derive multiple soliton solutions for this equation. We also derive several other solutions of distinct physical structures. The obtained results enrich the KdV system and explore valuable analysis for the solitary wave phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信