Junyu Li , Ye Zhang , Wen Shu , Xiaobing Feng , Yingchun Wang , Pengju Yan , Xiaolin Li , Chulin Sha , Min He
{"title":"M4:用于组织病理学图像分析中多实例学习的多代理多门混合专家网络","authors":"Junyu Li , Ye Zhang , Wen Shu , Xiaobing Feng , Yingchun Wang , Pengju Yan , Xiaolin Li , Chulin Sha , Min He","doi":"10.1016/j.media.2025.103561","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple instance learning (MIL) has been successfully applied for whole slide images (WSIs) analysis in computational pathology, enabling a wide range of prediction tasks from tumor subtyping to inferring genetic mutations and multi-omics biomarkers. However, existing MIL methods predominantly focus on single-task learning, resulting in not only overall low efficiency but also the overlook of inter-task relatedness. To address these issues, we proposed an adapted architecture of Multi-gate Mixture-of-experts with Multi-proxy for Multiple instance learning (M4), and applied this framework for simultaneous prediction of multiple genetic mutations from WSIs. The proposed M4 model has two main innovations: (1) adopting a multi-gate mixture-of-experts strategy for multiple genetic mutation simultaneous prediction on a single WSI; (2) introducing a multi-proxy CNN construction on the expert and gate networks to effectively and efficiently capture patch-patch interactions from WSI. Our model achieved significant improvements across five tested TCGA datasets in comparison to current state-of-the-art single-task methods. The code is available at: <span><span>https://github.com/Bigyehahaha/M4</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103561"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M4: Multi-proxy multi-gate mixture of experts network for multiple instance learning in histopathology image analysis\",\"authors\":\"Junyu Li , Ye Zhang , Wen Shu , Xiaobing Feng , Yingchun Wang , Pengju Yan , Xiaolin Li , Chulin Sha , Min He\",\"doi\":\"10.1016/j.media.2025.103561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiple instance learning (MIL) has been successfully applied for whole slide images (WSIs) analysis in computational pathology, enabling a wide range of prediction tasks from tumor subtyping to inferring genetic mutations and multi-omics biomarkers. However, existing MIL methods predominantly focus on single-task learning, resulting in not only overall low efficiency but also the overlook of inter-task relatedness. To address these issues, we proposed an adapted architecture of Multi-gate Mixture-of-experts with Multi-proxy for Multiple instance learning (M4), and applied this framework for simultaneous prediction of multiple genetic mutations from WSIs. The proposed M4 model has two main innovations: (1) adopting a multi-gate mixture-of-experts strategy for multiple genetic mutation simultaneous prediction on a single WSI; (2) introducing a multi-proxy CNN construction on the expert and gate networks to effectively and efficiently capture patch-patch interactions from WSI. Our model achieved significant improvements across five tested TCGA datasets in comparison to current state-of-the-art single-task methods. The code is available at: <span><span>https://github.com/Bigyehahaha/M4</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"103 \",\"pages\":\"Article 103561\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525001082\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001082","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
M4: Multi-proxy multi-gate mixture of experts network for multiple instance learning in histopathology image analysis
Multiple instance learning (MIL) has been successfully applied for whole slide images (WSIs) analysis in computational pathology, enabling a wide range of prediction tasks from tumor subtyping to inferring genetic mutations and multi-omics biomarkers. However, existing MIL methods predominantly focus on single-task learning, resulting in not only overall low efficiency but also the overlook of inter-task relatedness. To address these issues, we proposed an adapted architecture of Multi-gate Mixture-of-experts with Multi-proxy for Multiple instance learning (M4), and applied this framework for simultaneous prediction of multiple genetic mutations from WSIs. The proposed M4 model has two main innovations: (1) adopting a multi-gate mixture-of-experts strategy for multiple genetic mutation simultaneous prediction on a single WSI; (2) introducing a multi-proxy CNN construction on the expert and gate networks to effectively and efficiently capture patch-patch interactions from WSI. Our model achieved significant improvements across five tested TCGA datasets in comparison to current state-of-the-art single-task methods. The code is available at: https://github.com/Bigyehahaha/M4.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.