{"title":"通过全原子模拟,理顺了有机-铂杂化配合物向四双杂化结合的结构基础","authors":"Salvatore Muscarella, Irene Treccarichi, Luisa D'Anna, Angelo Spinello","doi":"10.1016/j.jinorgbio.2025.112904","DOIUrl":null,"url":null,"abstract":"<div><div>Guanine-rich sequences containing complementary base pairs can fold into non-canonical quadruplex-duplex hybrid (QDH) conformations. These structures possess unique structural features, leading to the presence of a peculiar binding pocket that can be distinguished from a canonical double helix or a G-quadruplex (G4) structure. Recently, two organic-metal hybrid platinum complexes, able to selectively and strongly recognize a particular type of QDH with a lateral duplex stem-loop, were reported in the literature. However, solution structures are not available for all the investigated compounds, leaving unanswered questions on the structural traits underlying the different binding affinity of these complexes. In this work, we address this gap using all-atom simulations to unravel the key features driving the high selectivity of these organic‑platinum hybrid complexes at an atomistic level. In particular, their binding affinity depends on a delicate balance between the extended π-π stacking interactions performed in the G4-duplex binding pocket and the capacity to form stable hydrogen bonds with the surrounding nucleobases. Thus, our findings provide essential insights to guide the rational design of novel compounds that selectively target QDH structures.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"268 ","pages":"Article 112904"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationalizing the structural basis of organic-platinum hybrid complexes binding towards quadruplex-duplex hybrids through all-atom simulations\",\"authors\":\"Salvatore Muscarella, Irene Treccarichi, Luisa D'Anna, Angelo Spinello\",\"doi\":\"10.1016/j.jinorgbio.2025.112904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Guanine-rich sequences containing complementary base pairs can fold into non-canonical quadruplex-duplex hybrid (QDH) conformations. These structures possess unique structural features, leading to the presence of a peculiar binding pocket that can be distinguished from a canonical double helix or a G-quadruplex (G4) structure. Recently, two organic-metal hybrid platinum complexes, able to selectively and strongly recognize a particular type of QDH with a lateral duplex stem-loop, were reported in the literature. However, solution structures are not available for all the investigated compounds, leaving unanswered questions on the structural traits underlying the different binding affinity of these complexes. In this work, we address this gap using all-atom simulations to unravel the key features driving the high selectivity of these organic‑platinum hybrid complexes at an atomistic level. In particular, their binding affinity depends on a delicate balance between the extended π-π stacking interactions performed in the G4-duplex binding pocket and the capacity to form stable hydrogen bonds with the surrounding nucleobases. Thus, our findings provide essential insights to guide the rational design of novel compounds that selectively target QDH structures.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"268 \",\"pages\":\"Article 112904\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425000844\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000844","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Rationalizing the structural basis of organic-platinum hybrid complexes binding towards quadruplex-duplex hybrids through all-atom simulations
Guanine-rich sequences containing complementary base pairs can fold into non-canonical quadruplex-duplex hybrid (QDH) conformations. These structures possess unique structural features, leading to the presence of a peculiar binding pocket that can be distinguished from a canonical double helix or a G-quadruplex (G4) structure. Recently, two organic-metal hybrid platinum complexes, able to selectively and strongly recognize a particular type of QDH with a lateral duplex stem-loop, were reported in the literature. However, solution structures are not available for all the investigated compounds, leaving unanswered questions on the structural traits underlying the different binding affinity of these complexes. In this work, we address this gap using all-atom simulations to unravel the key features driving the high selectivity of these organic‑platinum hybrid complexes at an atomistic level. In particular, their binding affinity depends on a delicate balance between the extended π-π stacking interactions performed in the G4-duplex binding pocket and the capacity to form stable hydrogen bonds with the surrounding nucleobases. Thus, our findings provide essential insights to guide the rational design of novel compounds that selectively target QDH structures.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.