人口密度估计。

Progress in food & nutrition science Pub Date : 1988-01-01
D Katz
{"title":"人口密度估计。","authors":"D Katz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In many modeling situations, a set of values for the model parameters is regarded as characterizing an individual. The modeler may, however, be interested in estimating the distribution of parameter values in the population from which the individuals are sampled. Some applications of population estimation, a survey of approaches to the estimation problem and some current work will be discussed. The approaches discussed include the \"naive pooled data approach,\" two stage methods, the first order method proposed by Sheiner and Beal and a nonparametric maximum likelihood procedure. General approaches employing Bayes' Theorem are also considered.</p>","PeriodicalId":76370,"journal":{"name":"Progress in food & nutrition science","volume":"12 3","pages":"325-38"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population density estimation.\",\"authors\":\"D Katz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many modeling situations, a set of values for the model parameters is regarded as characterizing an individual. The modeler may, however, be interested in estimating the distribution of parameter values in the population from which the individuals are sampled. Some applications of population estimation, a survey of approaches to the estimation problem and some current work will be discussed. The approaches discussed include the \\\"naive pooled data approach,\\\" two stage methods, the first order method proposed by Sheiner and Beal and a nonparametric maximum likelihood procedure. General approaches employing Bayes' Theorem are also considered.</p>\",\"PeriodicalId\":76370,\"journal\":{\"name\":\"Progress in food & nutrition science\",\"volume\":\"12 3\",\"pages\":\"325-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in food & nutrition science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in food & nutrition science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多建模情况下,模型参数的一组值被视为个体的特征。然而,建模者可能感兴趣的是估计参数值在抽样个体的总体中的分布。本文将讨论人口估计的一些应用、估计问题的研究方法和目前的一些工作。讨论的方法包括“朴素池数据方法”,两阶段方法,由Sheiner和Beal提出的一阶方法和非参数极大似然过程。还考虑了采用贝叶斯定理的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population density estimation.

In many modeling situations, a set of values for the model parameters is regarded as characterizing an individual. The modeler may, however, be interested in estimating the distribution of parameter values in the population from which the individuals are sampled. Some applications of population estimation, a survey of approaches to the estimation problem and some current work will be discussed. The approaches discussed include the "naive pooled data approach," two stage methods, the first order method proposed by Sheiner and Beal and a nonparametric maximum likelihood procedure. General approaches employing Bayes' Theorem are also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信