{"title":"阈值策略设计中的后悔分析","authors":"Federico Crippa","doi":"10.1016/j.jeconom.2025.105998","DOIUrl":null,"url":null,"abstract":"<div><div>Threshold policies are decision rules that assign treatments based on whether an observable characteristic exceeds a certain threshold. They are widespread across multiple domains, including welfare programs, taxation, and clinical medicine. This paper examines the problem of designing threshold policies using experimental data, when the goal is to maximize the population welfare. First, I characterize the regret – a measure of policy optimality – of the Empirical Welfare Maximizer (EWM) policy, popular in the literature. Next, I introduce the Smoothed Welfare Maximizer (SWM) policy, which improves the EWM’s regret convergence rate under an additional smoothness condition. The two policies are compared by studying how differently their regrets depend on the population distribution, and investigating their finite sample performances through Monte Carlo simulations. In many contexts, the SWM policy guarantees larger welfare than the EWM. An empirical illustration demonstrates how the treatment recommendations of the two policies may differ in practice.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105998"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regret analysis in threshold policy design\",\"authors\":\"Federico Crippa\",\"doi\":\"10.1016/j.jeconom.2025.105998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Threshold policies are decision rules that assign treatments based on whether an observable characteristic exceeds a certain threshold. They are widespread across multiple domains, including welfare programs, taxation, and clinical medicine. This paper examines the problem of designing threshold policies using experimental data, when the goal is to maximize the population welfare. First, I characterize the regret – a measure of policy optimality – of the Empirical Welfare Maximizer (EWM) policy, popular in the literature. Next, I introduce the Smoothed Welfare Maximizer (SWM) policy, which improves the EWM’s regret convergence rate under an additional smoothness condition. The two policies are compared by studying how differently their regrets depend on the population distribution, and investigating their finite sample performances through Monte Carlo simulations. In many contexts, the SWM policy guarantees larger welfare than the EWM. An empirical illustration demonstrates how the treatment recommendations of the two policies may differ in practice.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"249 \",\"pages\":\"Article 105998\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625000521\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000521","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Threshold policies are decision rules that assign treatments based on whether an observable characteristic exceeds a certain threshold. They are widespread across multiple domains, including welfare programs, taxation, and clinical medicine. This paper examines the problem of designing threshold policies using experimental data, when the goal is to maximize the population welfare. First, I characterize the regret – a measure of policy optimality – of the Empirical Welfare Maximizer (EWM) policy, popular in the literature. Next, I introduce the Smoothed Welfare Maximizer (SWM) policy, which improves the EWM’s regret convergence rate under an additional smoothness condition. The two policies are compared by studying how differently their regrets depend on the population distribution, and investigating their finite sample performances through Monte Carlo simulations. In many contexts, the SWM policy guarantees larger welfare than the EWM. An empirical illustration demonstrates how the treatment recommendations of the two policies may differ in practice.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.