具有内生用户均衡的道路定价博弈理论模型,包含多个用户等级

IF 5.8 1区 工程技术 Q1 ECONOMICS
Gaurav Malik , Stef Proost , Chris M․J․ Tampère
{"title":"具有内生用户均衡的道路定价博弈理论模型,包含多个用户等级","authors":"Gaurav Malik ,&nbsp;Stef Proost ,&nbsp;Chris M․J․ Tampère","doi":"10.1016/j.trb.2025.103211","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a game-theoretical model of road pricing. The model incorporates an endogenized demand and path-choice user-equilibrium with variable user demand and multiple user classes. Different to most of the literature, the proposed model allows to compute in a direct way the optimal tolls, rather than by trial and error of exogenous toll values and tackles the problem of inactive paths that can become active (and vice-versa). Additionally, games with multiple government in different settings can be solved. We proceed in four stages. Firstly, the user-equilibrium model is developed to predict the response of general users to toll instruments of the government(s). Modelling of multiple user classes allows to differentiate users who have different Value of Time and Willingness-To-Pay for their trips. Further, it allows such users to be targeted by different toll instruments. Secondly, a single-player optimization problem is formulated to find optimal toll values for a government acting as a Stackelberg leader over the users. Thirdly, to handle the non-uniqueness of user-equilibrium path flows, a heuristic-based post-processing method is presented that helps in identifying suitable access restrictions necessary to avoid the suboptimal user responses. Fourthly, the single-player optimization problem is used as a building block to develop a general game-theoretical framework that can be applied to different competition scenarios between different types of governments with each, possibly, tolling a different part of the network or the society. The model is, then, applied to four illustrative case-studies. The first case-study involves a single-player optimization problem and ends with a comparison of three solution methods. Mixed Integer Quadratic Program is shown to be the fastest as well as the most consistent. The second case-study involves a game-theoretical problem with two governments and two user classes, and four competition scenarios are elaborated. It is demonstrated how the central objective function can only be worsened by any type of competition between players, and that players have an incentive to take leadership to convert a Nash game to a Stackelberg game. The third case study specifically addresses the non-uniqueness of user-equilibrium path flows, and two different levels of access restrictions are assessed in the post-processing. Finally, the fourth case study shows an application of the single-player optimization problem to a real-world urban mobility problem.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"195 ","pages":"Article 103211"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A game-theoretical model of road pricing with an endogenized user-equilibrium with multiple user classes\",\"authors\":\"Gaurav Malik ,&nbsp;Stef Proost ,&nbsp;Chris M․J․ Tampère\",\"doi\":\"10.1016/j.trb.2025.103211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a game-theoretical model of road pricing. The model incorporates an endogenized demand and path-choice user-equilibrium with variable user demand and multiple user classes. Different to most of the literature, the proposed model allows to compute in a direct way the optimal tolls, rather than by trial and error of exogenous toll values and tackles the problem of inactive paths that can become active (and vice-versa). Additionally, games with multiple government in different settings can be solved. We proceed in four stages. Firstly, the user-equilibrium model is developed to predict the response of general users to toll instruments of the government(s). Modelling of multiple user classes allows to differentiate users who have different Value of Time and Willingness-To-Pay for their trips. Further, it allows such users to be targeted by different toll instruments. Secondly, a single-player optimization problem is formulated to find optimal toll values for a government acting as a Stackelberg leader over the users. Thirdly, to handle the non-uniqueness of user-equilibrium path flows, a heuristic-based post-processing method is presented that helps in identifying suitable access restrictions necessary to avoid the suboptimal user responses. Fourthly, the single-player optimization problem is used as a building block to develop a general game-theoretical framework that can be applied to different competition scenarios between different types of governments with each, possibly, tolling a different part of the network or the society. The model is, then, applied to four illustrative case-studies. The first case-study involves a single-player optimization problem and ends with a comparison of three solution methods. Mixed Integer Quadratic Program is shown to be the fastest as well as the most consistent. The second case-study involves a game-theoretical problem with two governments and two user classes, and four competition scenarios are elaborated. It is demonstrated how the central objective function can only be worsened by any type of competition between players, and that players have an incentive to take leadership to convert a Nash game to a Stackelberg game. The third case study specifically addresses the non-uniqueness of user-equilibrium path flows, and two different levels of access restrictions are assessed in the post-processing. Finally, the fourth case study shows an application of the single-player optimization problem to a real-world urban mobility problem.</div></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"195 \",\"pages\":\"Article 103211\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261525000608\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525000608","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A game-theoretical model of road pricing with an endogenized user-equilibrium with multiple user classes
This paper presents a game-theoretical model of road pricing. The model incorporates an endogenized demand and path-choice user-equilibrium with variable user demand and multiple user classes. Different to most of the literature, the proposed model allows to compute in a direct way the optimal tolls, rather than by trial and error of exogenous toll values and tackles the problem of inactive paths that can become active (and vice-versa). Additionally, games with multiple government in different settings can be solved. We proceed in four stages. Firstly, the user-equilibrium model is developed to predict the response of general users to toll instruments of the government(s). Modelling of multiple user classes allows to differentiate users who have different Value of Time and Willingness-To-Pay for their trips. Further, it allows such users to be targeted by different toll instruments. Secondly, a single-player optimization problem is formulated to find optimal toll values for a government acting as a Stackelberg leader over the users. Thirdly, to handle the non-uniqueness of user-equilibrium path flows, a heuristic-based post-processing method is presented that helps in identifying suitable access restrictions necessary to avoid the suboptimal user responses. Fourthly, the single-player optimization problem is used as a building block to develop a general game-theoretical framework that can be applied to different competition scenarios between different types of governments with each, possibly, tolling a different part of the network or the society. The model is, then, applied to four illustrative case-studies. The first case-study involves a single-player optimization problem and ends with a comparison of three solution methods. Mixed Integer Quadratic Program is shown to be the fastest as well as the most consistent. The second case-study involves a game-theoretical problem with two governments and two user classes, and four competition scenarios are elaborated. It is demonstrated how the central objective function can only be worsened by any type of competition between players, and that players have an incentive to take leadership to convert a Nash game to a Stackelberg game. The third case study specifically addresses the non-uniqueness of user-equilibrium path flows, and two different levels of access restrictions are assessed in the post-processing. Finally, the fourth case study shows an application of the single-player optimization problem to a real-world urban mobility problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Research Part B-Methodological
Transportation Research Part B-Methodological 工程技术-工程:土木
CiteScore
12.40
自引率
8.80%
发文量
143
审稿时长
14.1 weeks
期刊介绍: Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信