IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jun Gao , Junlin Cui , Huijia Wu , Liuyu Xiang , Han Zhao , Xiangang Li , Meng Fang , Yaodong Yang , Zhaofeng He
{"title":"Can large language models independently complete tasks? A dynamic evaluation framework for multi-turn task planning and completion","authors":"Jun Gao ,&nbsp;Junlin Cui ,&nbsp;Huijia Wu ,&nbsp;Liuyu Xiang ,&nbsp;Han Zhao ,&nbsp;Xiangang Li ,&nbsp;Meng Fang ,&nbsp;Yaodong Yang ,&nbsp;Zhaofeng He","doi":"10.1016/j.neucom.2025.130135","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) are increasingly relied upon for multi-turn dialogue to conduct complex tasks. However, existing benchmarks mainly evaluate LLMs as agents, overlooking their potential as independent systems to accomplish complex tasks. In addition, these benchmarks typically evaluate the planning and completion capabilities of the models individually, rather than simultaneously. To address these issues, we propose a new <strong>Dynamic Evaluation Framework for Multi-Turn task planning and completion (DEF-MT)</strong> to assess the ability of LLM to independently complete complex tasks in multi-turn scenarios. Our approach quantifies the model’s planning capability by guiding it to generate planning and responses sequentially. Simultaneously, we use a dynamic approach to generate data that simulates the complex intents of real users. Finally, experiments conducted on 9 mainstream models using the Multiwoz 2.2 dataset, indicate that the existing models’ sub-task planning capabilities hinder their ability to complete complex tasks, providing a meaningful reference for the future optimization direction of LLM.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130135"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225008070","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)越来越多地被用于执行复杂任务的多轮对话。然而,现有的基准主要将 LLM 作为代理进行评估,忽略了它们作为独立系统完成复杂任务的潜力。此外,这些基准通常单独而非同时评估模型的规划和完成能力。为了解决这些问题,我们提出了一种新的多转弯任务规划和完成动态评估框架(DEF-MT),用于评估 LLM 在多转弯场景中独立完成复杂任务的能力。我们的方法通过引导模型按顺序生成规划和响应来量化模型的规划能力。同时,我们使用动态方法生成数据,模拟真实用户的复杂意图。最后,使用 Multiwoz 2.2 数据集对 9 个主流模型进行的实验表明,现有模型的子任务规划能力阻碍了它们完成复杂任务的能力,这为 LLM 未来的优化方向提供了有意义的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can large language models independently complete tasks? A dynamic evaluation framework for multi-turn task planning and completion
Large language models (LLMs) are increasingly relied upon for multi-turn dialogue to conduct complex tasks. However, existing benchmarks mainly evaluate LLMs as agents, overlooking their potential as independent systems to accomplish complex tasks. In addition, these benchmarks typically evaluate the planning and completion capabilities of the models individually, rather than simultaneously. To address these issues, we propose a new Dynamic Evaluation Framework for Multi-Turn task planning and completion (DEF-MT) to assess the ability of LLM to independently complete complex tasks in multi-turn scenarios. Our approach quantifies the model’s planning capability by guiding it to generate planning and responses sequentially. Simultaneously, we use a dynamic approach to generate data that simulates the complex intents of real users. Finally, experiments conducted on 9 mainstream models using the Multiwoz 2.2 dataset, indicate that the existing models’ sub-task planning capabilities hinder their ability to complete complex tasks, providing a meaningful reference for the future optimization direction of LLM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信