Wenbin Yang , Xin Chang
{"title":"Time series analysis and prediction of the trends of COVID-19 epidemic in Singapore based on machine learning","authors":"Wenbin Yang ,&nbsp;Xin Chang","doi":"10.1016/j.cmpbup.2025.100190","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic has posed a significant threat to global health, with ongoing rises in new cases and deaths in Singapore, profoundly affecting public health, social activities, and the economy. This study compares the performance of LSTM, GRU, and a composite prediction model (LSTM-GRU) using a dataset of new and cumulative COVID-19 cases in Singapore, provided by the World Health Organization. The analysis uses weekly cumulative data from 2020 to January 21, 2024, to forecast new cases for the upcoming weeks. Model performance is evaluated using RMSE, MAE, MAPE, and R2. The results show that the LSTM model outperforms others, particularly in capturing significant data fluctuations. This research provides insights into the trends of the pandemic in Singapore and offers a basis for further epidemiological control efforts in the region.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100190"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266699002500014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 大流行对全球健康构成了重大威胁,新加坡的新增病例和死亡人数持续上升,严重影响了公共卫生、社会活动和经济。本研究使用世界卫生组织提供的新加坡 COVID-19 新发病例和累计病例数据集,比较了 LSTM、GRU 和复合预测模型(LSTM-GRU)的性能。分析使用 2020 年至 2024 年 1 月 21 日的每周累积数据来预测未来几周的新增病例。使用 RMSE、MAE、MAPE 和 R2 对模型性能进行了评估。结果表明,LSTM 模型优于其他模型,尤其是在捕捉重大数据波动方面。这项研究有助于深入了解新加坡的疫情趋势,并为该地区进一步的流行病控制工作提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time series analysis and prediction of the trends of COVID-19 epidemic in Singapore based on machine learning
The COVID-19 pandemic has posed a significant threat to global health, with ongoing rises in new cases and deaths in Singapore, profoundly affecting public health, social activities, and the economy. This study compares the performance of LSTM, GRU, and a composite prediction model (LSTM-GRU) using a dataset of new and cumulative COVID-19 cases in Singapore, provided by the World Health Organization. The analysis uses weekly cumulative data from 2020 to January 21, 2024, to forecast new cases for the upcoming weeks. Model performance is evaluated using RMSE, MAE, MAPE, and R2. The results show that the LSTM model outperforms others, particularly in capturing significant data fluctuations. This research provides insights into the trends of the pandemic in Singapore and offers a basis for further epidemiological control efforts in the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信