用于水下图像增强的新型边缘特征注意力融合框架

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Shuai Shen, Haoyi Wang, Weitao Chen, Pingkang Wang, Qianyong Liang, Xuwen Qin
{"title":"用于水下图像增强的新型边缘特征注意力融合框架","authors":"Shuai Shen, Haoyi Wang, Weitao Chen, Pingkang Wang, Qianyong Liang, Xuwen Qin","doi":"10.3389/fmars.2025.1555286","DOIUrl":null,"url":null,"abstract":"Underwater images captured by Remotely Operated Vehicles are critical for marine research, ocean engineering, and national defense, but challenges such as blurriness and color distortion necessitate advanced enhancement techniques. To address these issues, this paper presents the CUG-UIEF algorithm, an underwater image enhancement framework leveraging edge feature attention fusion. The method comprises three modules: 1) an Attention-Guided Edge Feature Fusion Module that extracts edge information via edge operators and enhances object detail through multi-scale feature integration with channel-cross attention to resolve edge blurring; 2) a Spatial Information Enhancement Module that employs spatial-cross attention to capture spatial interrelationships and improve semantic representation, mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception Optimization integrating perceptual, structural, and anomaly optimizations to address detail blurring and low contrast. Experimental results demonstrate that CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41% improvement over six mainstream algorithms, and a structural similarity index of 0.92, a 1.09% increase. These findings highlight the model’s effectiveness in balancing edge preservation, spatial semantics, and perceptual quality, offering promising applications in marine science and related fields.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"74 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel edge-feature attention fusion framework for underwater image enhancement\",\"authors\":\"Shuai Shen, Haoyi Wang, Weitao Chen, Pingkang Wang, Qianyong Liang, Xuwen Qin\",\"doi\":\"10.3389/fmars.2025.1555286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater images captured by Remotely Operated Vehicles are critical for marine research, ocean engineering, and national defense, but challenges such as blurriness and color distortion necessitate advanced enhancement techniques. To address these issues, this paper presents the CUG-UIEF algorithm, an underwater image enhancement framework leveraging edge feature attention fusion. The method comprises three modules: 1) an Attention-Guided Edge Feature Fusion Module that extracts edge information via edge operators and enhances object detail through multi-scale feature integration with channel-cross attention to resolve edge blurring; 2) a Spatial Information Enhancement Module that employs spatial-cross attention to capture spatial interrelationships and improve semantic representation, mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception Optimization integrating perceptual, structural, and anomaly optimizations to address detail blurring and low contrast. Experimental results demonstrate that CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41% improvement over six mainstream algorithms, and a structural similarity index of 0.92, a 1.09% increase. These findings highlight the model’s effectiveness in balancing edge preservation, spatial semantics, and perceptual quality, offering promising applications in marine science and related fields.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2025.1555286\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1555286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

远程操作车辆捕获的水下图像对海洋研究、海洋工程和国防至关重要,但模糊和色彩失真等挑战需要先进的增强技术。为了解决这些问题,本文提出了利用边缘特征注意力融合的水下图像增强框架ug - uief算法。该方法包括三个模块:1)注意引导边缘特征融合模块,通过边缘算子提取边缘信息,通过多尺度特征集成和通道交叉注意增强目标细节,解决边缘模糊问题;2)空间信息增强模块,利用空间交叉注意捕捉空间相互关系,改善语义表征,缓解低信噪比;3)多维感知优化,整合感知、结构和异常优化,以解决细节模糊和低对比度问题。实验结果表明,ug - uief算法的平均峰值信噪比为24.49 dB,比6种主流算法提高了8.41%,结构相似度指数为0.92,提高了1.09%。这些发现突出了该模型在平衡边缘保存、空间语义和感知质量方面的有效性,为海洋科学和相关领域提供了有前景的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel edge-feature attention fusion framework for underwater image enhancement
Underwater images captured by Remotely Operated Vehicles are critical for marine research, ocean engineering, and national defense, but challenges such as blurriness and color distortion necessitate advanced enhancement techniques. To address these issues, this paper presents the CUG-UIEF algorithm, an underwater image enhancement framework leveraging edge feature attention fusion. The method comprises three modules: 1) an Attention-Guided Edge Feature Fusion Module that extracts edge information via edge operators and enhances object detail through multi-scale feature integration with channel-cross attention to resolve edge blurring; 2) a Spatial Information Enhancement Module that employs spatial-cross attention to capture spatial interrelationships and improve semantic representation, mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception Optimization integrating perceptual, structural, and anomaly optimizations to address detail blurring and low contrast. Experimental results demonstrate that CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41% improvement over six mainstream algorithms, and a structural similarity index of 0.92, a 1.09% increase. These findings highlight the model’s effectiveness in balancing edge preservation, spatial semantics, and perceptual quality, offering promising applications in marine science and related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信