基于全驱动系统方法的空间机械臂轨迹跟踪分布鲁棒模型预测控制

IF 5.7 2区 计算机科学 Q1 ENGINEERING, AEROSPACE
Yi Heng Yang;Kai Zhang;Zhi Hua Chen;Xue Fei Yang;Guang Ren Duan
{"title":"基于全驱动系统方法的空间机械臂轨迹跟踪分布鲁棒模型预测控制","authors":"Yi Heng Yang;Kai Zhang;Zhi Hua Chen;Xue Fei Yang;Guang Ren Duan","doi":"10.1109/TAES.2025.3558184","DOIUrl":null,"url":null,"abstract":"Whether operating autonomously or assisting humans, multidegree-of-freedom free-flying space manipulator has shown enormous potential in space missions. Leveraging the fully actuated system approach (FASA), this article proposes a distributionally robust model predictive control (MPC) scheme for the trajectory tracking issue of space manipulator with stochastic uncertainties and multiple constraints on the angle, angular velocity, and control torque. First, a nominal FASA-based controller is designed to establish a linear second-order fully actuated model with desired eigenstructure assignment. By adopting an exact penalty function, a gradient-based optimization scheme is developed to optimize the FASA-based controller parameters offline, while avoiding violating of multiple constraints on angle, angular velocity, and control torque. Furthermore, a distributionally robust MPC is proposed to enable real-time optimization of auxiliary input, ensuring constraint satisfaction and enhancing performance in the presence of independent stochastic uncertainties. Recursive feasibility and convergence are proven. Monte Carlo numerical simulations are conducted with a planar space robot system to validate the superiority of proposed strategy.","PeriodicalId":13157,"journal":{"name":"IEEE Transactions on Aerospace and Electronic Systems","volume":"61 4","pages":"10483-10499"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally Robust Model Predictive Control for Trajectory Tracking of Space Manipulator Based on Fully Actuated System Approach\",\"authors\":\"Yi Heng Yang;Kai Zhang;Zhi Hua Chen;Xue Fei Yang;Guang Ren Duan\",\"doi\":\"10.1109/TAES.2025.3558184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whether operating autonomously or assisting humans, multidegree-of-freedom free-flying space manipulator has shown enormous potential in space missions. Leveraging the fully actuated system approach (FASA), this article proposes a distributionally robust model predictive control (MPC) scheme for the trajectory tracking issue of space manipulator with stochastic uncertainties and multiple constraints on the angle, angular velocity, and control torque. First, a nominal FASA-based controller is designed to establish a linear second-order fully actuated model with desired eigenstructure assignment. By adopting an exact penalty function, a gradient-based optimization scheme is developed to optimize the FASA-based controller parameters offline, while avoiding violating of multiple constraints on angle, angular velocity, and control torque. Furthermore, a distributionally robust MPC is proposed to enable real-time optimization of auxiliary input, ensuring constraint satisfaction and enhancing performance in the presence of independent stochastic uncertainties. Recursive feasibility and convergence are proven. Monte Carlo numerical simulations are conducted with a planar space robot system to validate the superiority of proposed strategy.\",\"PeriodicalId\":13157,\"journal\":{\"name\":\"IEEE Transactions on Aerospace and Electronic Systems\",\"volume\":\"61 4\",\"pages\":\"10483-10499\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Aerospace and Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949754/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Aerospace and Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10949754/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

无论是自主操作还是辅助操作,多自由度自由飞行空间机械臂在空间任务中都显示出巨大的潜力。利用全驱动系统方法(FASA),针对具有随机不确定性和角度、角速度和控制力矩多重约束的空间机械臂轨迹跟踪问题,提出了一种分布鲁棒模型预测控制(MPC)方案。首先,设计了一个名义上基于fasa的控制器,建立了一个具有期望特征结构分配的线性二阶全驱动模型。通过采用精确惩罚函数,提出了一种基于梯度的优化方案,在不违反角度、角速度和控制力矩多重约束的情况下,对基于faa的控制器参数进行离线优化。在此基础上,提出了一种分布鲁棒MPC算法,实现了辅助输入的实时优化,保证了约束的满足,提高了独立随机不确定性存在时的性能。证明了递归的可行性和收敛性。通过一个平面空间机器人系统的蒙特卡罗数值仿真,验证了所提策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally Robust Model Predictive Control for Trajectory Tracking of Space Manipulator Based on Fully Actuated System Approach
Whether operating autonomously or assisting humans, multidegree-of-freedom free-flying space manipulator has shown enormous potential in space missions. Leveraging the fully actuated system approach (FASA), this article proposes a distributionally robust model predictive control (MPC) scheme for the trajectory tracking issue of space manipulator with stochastic uncertainties and multiple constraints on the angle, angular velocity, and control torque. First, a nominal FASA-based controller is designed to establish a linear second-order fully actuated model with desired eigenstructure assignment. By adopting an exact penalty function, a gradient-based optimization scheme is developed to optimize the FASA-based controller parameters offline, while avoiding violating of multiple constraints on angle, angular velocity, and control torque. Furthermore, a distributionally robust MPC is proposed to enable real-time optimization of auxiliary input, ensuring constraint satisfaction and enhancing performance in the presence of independent stochastic uncertainties. Recursive feasibility and convergence are proven. Monte Carlo numerical simulations are conducted with a planar space robot system to validate the superiority of proposed strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
13.60%
发文量
433
审稿时长
8.7 months
期刊介绍: IEEE Transactions on Aerospace and Electronic Systems focuses on the organization, design, development, integration, and operation of complex systems for space, air, ocean, or ground environment. These systems include, but are not limited to, navigation, avionics, spacecraft, aerospace power, radar, sonar, telemetry, defense, transportation, automated testing, and command and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信