预测高危上尿路上皮癌肌肉侵袭性的预处理nomogram (robust2.0协作组)。

IF 4.2 2区 医学 Q1 UROLOGY & NEPHROLOGY
Francesco Ditonno, Antonio Franco, Eugenio Bologna, Alessandro Veccia, Riccardo Bertolo, Linhui Wang, Firas Abdollah, Marco Finati, Giuseppe Simone, Gabriele Tuderti, Emma Helstrom, Andres Correa, Ottavio De Cobelli, Matteo Ferro, Francesco Porpiglia, Daniele Amparore, Enrico Checcucci, Antonio Tufano, Sisto Perdonà, Raj Bhanvadia, Vitaly Margulis, Stephan Broenimann, Nirmish Singla, Dhruv Puri, Ithaar H Derweesh, Dinno F Mendiola, Mark L Gonzalgo, Reuben Ben-David, Reza Mehrazin, Sol C Moon, Soroush Rais-Bahrami, Courtney Yong, Chandru P Sundaram, Farshad S Moghaddam, Alireza Ghoreifi, Hooman Djaladat, Riccardo Autorino, Zhenjie Wu, Alessandro Antonelli
{"title":"预测高危上尿路上皮癌肌肉侵袭性的预处理nomogram (robust2.0协作组)。","authors":"Francesco Ditonno, Antonio Franco, Eugenio Bologna, Alessandro Veccia, Riccardo Bertolo, Linhui Wang, Firas Abdollah, Marco Finati, Giuseppe Simone, Gabriele Tuderti, Emma Helstrom, Andres Correa, Ottavio De Cobelli, Matteo Ferro, Francesco Porpiglia, Daniele Amparore, Enrico Checcucci, Antonio Tufano, Sisto Perdonà, Raj Bhanvadia, Vitaly Margulis, Stephan Broenimann, Nirmish Singla, Dhruv Puri, Ithaar H Derweesh, Dinno F Mendiola, Mark L Gonzalgo, Reuben Ben-David, Reza Mehrazin, Sol C Moon, Soroush Rais-Bahrami, Courtney Yong, Chandru P Sundaram, Farshad S Moghaddam, Alireza Ghoreifi, Hooman Djaladat, Riccardo Autorino, Zhenjie Wu, Alessandro Antonelli","doi":"10.23736/S2724-6051.25.05934-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ability to predict muscle invasion in the final pathology of upper tract urothelial carcinoma (UTUC) patients after radical nephroureterectomy (RNU) potentially influences the selection of the most appropriate treatment modality. The present study aims to develop a model predicting muscle-invasive status in high-risk UTUC.</p><p><strong>Methods: </strong>The ROBUUST (RObotic surgery for Upper tract Urothelial cancer - UTUC - STudy) 2.0 dataset is an international, multicenter registry of patients undergoing curative surgery for UTUC between 2015 and 2022. Data about high-risk patients, classified according to EAU and NCCN prognostic stratification criteria, who underwent RNU were retrieved. The primary outcome was the identification of muscle-invasiveness. Two multivariable models, differing in the inclusion of biopsy-related data, were fitted with pT stage results at final pathology. Their predictive ability was calculated using the area under the receiver operating characteristic curve and decision curve analysis (DCA). A nomogram was developed using the model demonstrating the highest area under the curve (AUC) and clinical net benefit.</p><p><strong>Results: </strong>In the overall cohort, 1558 patients met the inclusion criteria, with 934 patients having ≥pT2 disease. Patients in the ≥pT2 cohort had significantly worse oncological outcomes in terms of metastases, all-cause, and cancer-specific deaths (all P<0.001). The biopsy-related model had the highest AUC (74%) and the highest net benefit in DCA. The DCA showed an improvement in the clinical risk prediction of muscle-invasiveness, and a reduction in the number of upfront or unnecessary RNU, at every ≥pT2 probability threshold.</p><p><strong>Conclusions: </strong>The proposed prognostic model is a valuable tool for estimating the risk of muscle-invasiveness in high-risk UTUC patients, owing to its optimal predictive ability and user-friendly design.</p>","PeriodicalId":53228,"journal":{"name":"Minerva Urology and Nephrology","volume":"77 1","pages":"57-68"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pretreatment nomogram to predict muscle-invasiveness in high-risk upper tract urothelial carcinoma (ROBUUST 2.0 collaborative group).\",\"authors\":\"Francesco Ditonno, Antonio Franco, Eugenio Bologna, Alessandro Veccia, Riccardo Bertolo, Linhui Wang, Firas Abdollah, Marco Finati, Giuseppe Simone, Gabriele Tuderti, Emma Helstrom, Andres Correa, Ottavio De Cobelli, Matteo Ferro, Francesco Porpiglia, Daniele Amparore, Enrico Checcucci, Antonio Tufano, Sisto Perdonà, Raj Bhanvadia, Vitaly Margulis, Stephan Broenimann, Nirmish Singla, Dhruv Puri, Ithaar H Derweesh, Dinno F Mendiola, Mark L Gonzalgo, Reuben Ben-David, Reza Mehrazin, Sol C Moon, Soroush Rais-Bahrami, Courtney Yong, Chandru P Sundaram, Farshad S Moghaddam, Alireza Ghoreifi, Hooman Djaladat, Riccardo Autorino, Zhenjie Wu, Alessandro Antonelli\",\"doi\":\"10.23736/S2724-6051.25.05934-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The ability to predict muscle invasion in the final pathology of upper tract urothelial carcinoma (UTUC) patients after radical nephroureterectomy (RNU) potentially influences the selection of the most appropriate treatment modality. The present study aims to develop a model predicting muscle-invasive status in high-risk UTUC.</p><p><strong>Methods: </strong>The ROBUUST (RObotic surgery for Upper tract Urothelial cancer - UTUC - STudy) 2.0 dataset is an international, multicenter registry of patients undergoing curative surgery for UTUC between 2015 and 2022. Data about high-risk patients, classified according to EAU and NCCN prognostic stratification criteria, who underwent RNU were retrieved. The primary outcome was the identification of muscle-invasiveness. Two multivariable models, differing in the inclusion of biopsy-related data, were fitted with pT stage results at final pathology. Their predictive ability was calculated using the area under the receiver operating characteristic curve and decision curve analysis (DCA). A nomogram was developed using the model demonstrating the highest area under the curve (AUC) and clinical net benefit.</p><p><strong>Results: </strong>In the overall cohort, 1558 patients met the inclusion criteria, with 934 patients having ≥pT2 disease. Patients in the ≥pT2 cohort had significantly worse oncological outcomes in terms of metastases, all-cause, and cancer-specific deaths (all P<0.001). The biopsy-related model had the highest AUC (74%) and the highest net benefit in DCA. The DCA showed an improvement in the clinical risk prediction of muscle-invasiveness, and a reduction in the number of upfront or unnecessary RNU, at every ≥pT2 probability threshold.</p><p><strong>Conclusions: </strong>The proposed prognostic model is a valuable tool for estimating the risk of muscle-invasiveness in high-risk UTUC patients, owing to its optimal predictive ability and user-friendly design.</p>\",\"PeriodicalId\":53228,\"journal\":{\"name\":\"Minerva Urology and Nephrology\",\"volume\":\"77 1\",\"pages\":\"57-68\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerva Urology and Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23736/S2724-6051.25.05934-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S2724-6051.25.05934-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在根治性肾输尿管切除术(RNU)后上路尿路上皮癌(UTUC)患者的最终病理中预测肌肉侵犯的能力可能会影响最合适治疗方式的选择。本研究旨在建立一个预测高危UTUC中肌肉侵袭状态的模型。方法:robust(机器人手术治疗上尿路上皮癌- UTUC -研究)2.0数据集是2015年至2022年间接受治疗性UTUC手术的患者的国际多中心注册。根据EAU和NCCN预后分层标准进行RNU分类的高危患者资料被检索。主要结果是确定肌肉侵入性。在包含活检相关数据方面不同的两个多变量模型与最终病理的pT阶段结果相吻合。他们的预测能力是用接受者工作特征曲线和决策曲线分析(DCA)下的面积来计算的。使用该模型开发了一个图,显示最高曲线下面积(AUC)和临床净收益。结果:在整个队列中,1558例患者符合纳入标准,其中934例患者患有≥pT2疾病。≥pT2组患者在转移、全因和癌症特异性死亡方面的肿瘤预后明显较差(均为p)。结论:由于其最佳的预测能力和用户友好的设计,所提出的预后模型是估计高危UTUC患者肌肉侵袭风险的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pretreatment nomogram to predict muscle-invasiveness in high-risk upper tract urothelial carcinoma (ROBUUST 2.0 collaborative group).

Background: The ability to predict muscle invasion in the final pathology of upper tract urothelial carcinoma (UTUC) patients after radical nephroureterectomy (RNU) potentially influences the selection of the most appropriate treatment modality. The present study aims to develop a model predicting muscle-invasive status in high-risk UTUC.

Methods: The ROBUUST (RObotic surgery for Upper tract Urothelial cancer - UTUC - STudy) 2.0 dataset is an international, multicenter registry of patients undergoing curative surgery for UTUC between 2015 and 2022. Data about high-risk patients, classified according to EAU and NCCN prognostic stratification criteria, who underwent RNU were retrieved. The primary outcome was the identification of muscle-invasiveness. Two multivariable models, differing in the inclusion of biopsy-related data, were fitted with pT stage results at final pathology. Their predictive ability was calculated using the area under the receiver operating characteristic curve and decision curve analysis (DCA). A nomogram was developed using the model demonstrating the highest area under the curve (AUC) and clinical net benefit.

Results: In the overall cohort, 1558 patients met the inclusion criteria, with 934 patients having ≥pT2 disease. Patients in the ≥pT2 cohort had significantly worse oncological outcomes in terms of metastases, all-cause, and cancer-specific deaths (all P<0.001). The biopsy-related model had the highest AUC (74%) and the highest net benefit in DCA. The DCA showed an improvement in the clinical risk prediction of muscle-invasiveness, and a reduction in the number of upfront or unnecessary RNU, at every ≥pT2 probability threshold.

Conclusions: The proposed prognostic model is a valuable tool for estimating the risk of muscle-invasiveness in high-risk UTUC patients, owing to its optimal predictive ability and user-friendly design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerva Urology and Nephrology
Minerva Urology and Nephrology UROLOGY & NEPHROLOGY-
CiteScore
8.50
自引率
32.70%
发文量
237
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信