IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hui Sun, Zhiping Yan, Junhang Gao, Yingzhi Zheng, Yueyu Zheng, Yang Song, Yongji Liu, Zhixian Lin, Wencai Shen, Jin Fang, Hong Qu, Yanzhao Diao, Hongmei Liu, Sulian Su, Guihua Jiang
{"title":"Development of a Nomogram for Predicting Tuberous Sclerosis Complex Genotypes in Children Using Advanced Diffusion MRI and Clinical Data.","authors":"Hui Sun, Zhiping Yan, Junhang Gao, Yingzhi Zheng, Yueyu Zheng, Yang Song, Yongji Liu, Zhixian Lin, Wencai Shen, Jin Fang, Hong Qu, Yanzhao Diao, Hongmei Liu, Sulian Su, Guihua Jiang","doi":"10.1016/j.acra.2025.03.022","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Tuberous sclerosis complex (TSC) is a multisystem genetic disorder. Focusing on central nervous system manifestations, this study developed an imaging-clinical model combining advanced diffusion MRI parameters with neurological clinical features to distinguish TSC1 vs. TSC2 genotypes.</p><p><strong>Materials and methods: </strong>Eighty-eight patients newly diagnosed with TSC were enrolled. All underwent a stratified genetic testing strategy comprising whole-exome sequencing, whole-genome sequencing, and tissue-specific deep sequencing. Diffusion spectrum imaging provided parameters from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator MRI (MAP-MRI). A combined prediction model was constructed using logistic regression and validated via bootstrap resampling.</p><p><strong>Results: </strong>A younger age of onset, autism, neuropsychiatric disorders, intracellular volume fraction, and q-space inverse variance were independently associated with TSC2 mutations. The combined model achieved an AUC of 0.879 (95% CI: 0.841-0.917) in the training set and 0.864 (95% CI: 0.803-0.926) in the validation set. By DeLong's test, it significantly outperformed the clinical model (AUC: 0.637, 95% CI: 0.552-0.723; p < 0.001), while the difference from the imaging model (AUC: 0.833, 95% CI: 0.763-0.903) was not statistically significant (p = 0.068). However, net reclassification (NRI = 0.702, p < 0.001) and integrated discrimination improvement (IDI = 0.097, p < 0.001) both supported the combined model's superior classification ability.</p><p><strong>Conclusion: </strong>Integrating advanced diffusion MRI parameters with clinical data significantly improves prediction of TSC1 vs. TSC2 genotypes. This combined approach offers valuable support for early diagnosis and personalized treatment in TSC.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.03.022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

理由和目标:结节性硬化综合征(TSC)是一种多系统遗传性疾病。本研究以中枢神经系统表现为重点,建立了一个成像-临床模型,将先进的弥散核磁共振成像参数与神经系统临床特征相结合,以区分 TSC1 与 TSC2 基因型:88名新诊断为TSC的患者被纳入研究。所有患者均接受了分层基因检测策略,包括全外显子组测序、全基因组测序和组织特异性深度测序。弥散频谱成像提供了弥散张量成像(DTI)、弥散峰度成像(DKI)、神经元定向弥散和密度成像(NODDI)以及平均表观传播者磁共振成像(MAP-MRI)的参数。采用逻辑回归法构建了一个综合预测模型,并通过引导重采样进行了验证:结果:发病年龄较小、自闭症、神经精神障碍、细胞内体积分数和q空间反方差与TSC2突变独立相关。综合模型在训练集中的AUC为0.879(95% CI:0.841-0.917),在验证集中的AUC为0.864(95% CI:0.803-0.926)。通过 DeLong 检验,其结果明显优于临床模型(AUC:0.637,95% CI:0.552-0.723;p < 0.001),而与成像模型(AUC:0.833,95% CI:0.763-0.903)的差异无统计学意义(p = 0.068)。然而,净再分类(NRI = 0.702,p < 0.001)和综合辨别改进(IDI = 0.097,p < 0.001)都支持组合模型的卓越分类能力:结论:将高级弥散核磁共振成像参数与临床数据相结合可显著提高对TSC1与TSC2基因型的预测能力。这种联合方法为TSC的早期诊断和个性化治疗提供了宝贵的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Nomogram for Predicting Tuberous Sclerosis Complex Genotypes in Children Using Advanced Diffusion MRI and Clinical Data.

Rationale and objectives: Tuberous sclerosis complex (TSC) is a multisystem genetic disorder. Focusing on central nervous system manifestations, this study developed an imaging-clinical model combining advanced diffusion MRI parameters with neurological clinical features to distinguish TSC1 vs. TSC2 genotypes.

Materials and methods: Eighty-eight patients newly diagnosed with TSC were enrolled. All underwent a stratified genetic testing strategy comprising whole-exome sequencing, whole-genome sequencing, and tissue-specific deep sequencing. Diffusion spectrum imaging provided parameters from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator MRI (MAP-MRI). A combined prediction model was constructed using logistic regression and validated via bootstrap resampling.

Results: A younger age of onset, autism, neuropsychiatric disorders, intracellular volume fraction, and q-space inverse variance were independently associated with TSC2 mutations. The combined model achieved an AUC of 0.879 (95% CI: 0.841-0.917) in the training set and 0.864 (95% CI: 0.803-0.926) in the validation set. By DeLong's test, it significantly outperformed the clinical model (AUC: 0.637, 95% CI: 0.552-0.723; p < 0.001), while the difference from the imaging model (AUC: 0.833, 95% CI: 0.763-0.903) was not statistically significant (p = 0.068). However, net reclassification (NRI = 0.702, p < 0.001) and integrated discrimination improvement (IDI = 0.097, p < 0.001) both supported the combined model's superior classification ability.

Conclusion: Integrating advanced diffusion MRI parameters with clinical data significantly improves prediction of TSC1 vs. TSC2 genotypes. This combined approach offers valuable support for early diagnosis and personalized treatment in TSC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信