Yihong Zeng, Can Yan, Guobao Chen, Zhongmin Chen, Fuping Wang
{"title":"再生工程中氧释放基质的研究进展。","authors":"Yihong Zeng, Can Yan, Guobao Chen, Zhongmin Chen, Fuping Wang","doi":"10.1007/s11517-025-03354-6","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the effects of hypoxia on tissue repair have received wider attention with the deepening of tissue engineering research. Various oxygen supply strategies have wider applications in the field of tissue repair. Currently, commonly used methods of oxygen supply for defective tissues include hyperbaric oxygen (HBO) and oxygen-releasing materials. Between them, oxygen-releasing materials continuously and efficiently release oxygen from within the defective tissue. Compared with HBO, which may cause oxidative stress in healthy tissues, supplying oxygen via oxygen-releasing materials is safer because of their oxygen-releasing in situ and specific oxygen supply characteristics. However, there still exist some problems in the study of oxygen-releasing materials, such as cytotoxicity and the shortage of oxygen-releasing time. The current reviews on oxygen-releasing materials mostly elaborate on the principles of oxygen-releasing materials and lack a review of their preparation methods and applications. In this paper, different types of oxygen-releasing materials, such as hydrogels, microspheres, and layers, are reviewed concerning their applications, structures, current development status, and challenges.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in oxygen-releasing matrices for regenerative engineering applications.\",\"authors\":\"Yihong Zeng, Can Yan, Guobao Chen, Zhongmin Chen, Fuping Wang\",\"doi\":\"10.1007/s11517-025-03354-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the effects of hypoxia on tissue repair have received wider attention with the deepening of tissue engineering research. Various oxygen supply strategies have wider applications in the field of tissue repair. Currently, commonly used methods of oxygen supply for defective tissues include hyperbaric oxygen (HBO) and oxygen-releasing materials. Between them, oxygen-releasing materials continuously and efficiently release oxygen from within the defective tissue. Compared with HBO, which may cause oxidative stress in healthy tissues, supplying oxygen via oxygen-releasing materials is safer because of their oxygen-releasing in situ and specific oxygen supply characteristics. However, there still exist some problems in the study of oxygen-releasing materials, such as cytotoxicity and the shortage of oxygen-releasing time. The current reviews on oxygen-releasing materials mostly elaborate on the principles of oxygen-releasing materials and lack a review of their preparation methods and applications. In this paper, different types of oxygen-releasing materials, such as hydrogels, microspheres, and layers, are reviewed concerning their applications, structures, current development status, and challenges.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03354-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03354-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Advances in oxygen-releasing matrices for regenerative engineering applications.
In recent years, the effects of hypoxia on tissue repair have received wider attention with the deepening of tissue engineering research. Various oxygen supply strategies have wider applications in the field of tissue repair. Currently, commonly used methods of oxygen supply for defective tissues include hyperbaric oxygen (HBO) and oxygen-releasing materials. Between them, oxygen-releasing materials continuously and efficiently release oxygen from within the defective tissue. Compared with HBO, which may cause oxidative stress in healthy tissues, supplying oxygen via oxygen-releasing materials is safer because of their oxygen-releasing in situ and specific oxygen supply characteristics. However, there still exist some problems in the study of oxygen-releasing materials, such as cytotoxicity and the shortage of oxygen-releasing time. The current reviews on oxygen-releasing materials mostly elaborate on the principles of oxygen-releasing materials and lack a review of their preparation methods and applications. In this paper, different types of oxygen-releasing materials, such as hydrogels, microspheres, and layers, are reviewed concerning their applications, structures, current development status, and challenges.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).