偏移质量载体蛋白质组改进了多重单细胞蛋白质组学的定量分析。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Tommy K Cheung, Ying Zhu, Christopher M Rose
{"title":"偏移质量载体蛋白质组改进了多重单细胞蛋白质组学的定量分析。","authors":"Tommy K Cheung, Ying Zhu, Christopher M Rose","doi":"10.1016/j.mcpro.2025.100959","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplexed single cell proteomics by mass spectrometry (scpMS) approaches currently offer the highest throughput as measured by cells analyzed per day. These methods employ isobaric labels and typically a carrier proteome - a sample added at 20-500x the single cell level that improves peptide sampling and identification. Peptides from the carrier and single cell proteomes exist within the same precursor isotopic cluster and are co-isolated for identification and quantification. This represents a challenge as high levels of carrier proteome limit the sampling of peptide ions from single cell samples and can potentially lead to decreased accuracy of quantitative measurements. Here, we address this limitation by introducing a triggered by offset mass acquisition method for scpMS (toma-scpMS) that utilizes a carrier proteome labeled with non-isobaric tags that have the same chemical composition but different mass as the labels used for quantitative multiplexing. Within toma-scpMS the carrier proteome and single cell proteome are separated at the precursor level, enabling separate isolation, fragmentation, and quantitation of the single cell samples. To enable this workflow we implemented a custom data acquisition scheme within inSeqAPI, an instrument application programming interface program that performed real-time identification of carrier proteome peptides and subsequent triggering of offset single cell quantification scans. We demonstrate that toma-scpMS is more robust to high-levels of carrier proteome and offers superior quantitative accuracy as compared to traditional multiplexed scpMS approaches when similar carrier proteome levels are employed.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100959"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offset mass carrier proteome improves quantification of multiplexed single cell proteomics.\",\"authors\":\"Tommy K Cheung, Ying Zhu, Christopher M Rose\",\"doi\":\"10.1016/j.mcpro.2025.100959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiplexed single cell proteomics by mass spectrometry (scpMS) approaches currently offer the highest throughput as measured by cells analyzed per day. These methods employ isobaric labels and typically a carrier proteome - a sample added at 20-500x the single cell level that improves peptide sampling and identification. Peptides from the carrier and single cell proteomes exist within the same precursor isotopic cluster and are co-isolated for identification and quantification. This represents a challenge as high levels of carrier proteome limit the sampling of peptide ions from single cell samples and can potentially lead to decreased accuracy of quantitative measurements. Here, we address this limitation by introducing a triggered by offset mass acquisition method for scpMS (toma-scpMS) that utilizes a carrier proteome labeled with non-isobaric tags that have the same chemical composition but different mass as the labels used for quantitative multiplexing. Within toma-scpMS the carrier proteome and single cell proteome are separated at the precursor level, enabling separate isolation, fragmentation, and quantitation of the single cell samples. To enable this workflow we implemented a custom data acquisition scheme within inSeqAPI, an instrument application programming interface program that performed real-time identification of carrier proteome peptides and subsequent triggering of offset single cell quantification scans. We demonstrate that toma-scpMS is more robust to high-levels of carrier proteome and offers superior quantitative accuracy as compared to traditional multiplexed scpMS approaches when similar carrier proteome levels are employed.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100959\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.100959\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100959","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

多重单细胞质谱蛋白质组学(scpMS)方法目前具有最高的通量,以每天分析的细胞数来衡量。这些方法采用等位标签和典型的载体蛋白质组--在单细胞水平上添加 20-500 倍的样本,从而提高了肽的取样和鉴定能力。载体蛋白质组和单细胞蛋白质组中的肽存在于同一前体同位素群中,并共同分离出来进行鉴定和定量。这是一个挑战,因为高水平的载体蛋白质组限制了从单细胞样本中采样肽离子,并可能导致定量测量的准确性降低。在这里,我们引入了一种用于 scpMS(toma-scpMS)的偏移质量触发采集方法,利用用非等位标签标记的载体蛋白质组来解决这一局限性,这些标签与用于定量复用的标签具有相同的化学成分,但质量不同。在 toma-scpMS 中,载体蛋白质组和单细胞蛋白质组在前体水平上分离,从而实现了单细胞样品的单独分离、破碎和定量。为了实现这一工作流程,我们在仪器应用程序接口程序 inSeqAPI 中实施了一个自定义数据采集方案,该方案可实时识别载体蛋白质组肽段,并随后触发偏移单细胞定量扫描。我们证明,与传统的多路复用 scpMS 方法相比,当采用相似的载体蛋白质组水平时,toma-scpMS 对高水平的载体蛋白质组具有更强的鲁棒性,并能提供更高的定量准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offset mass carrier proteome improves quantification of multiplexed single cell proteomics.

Multiplexed single cell proteomics by mass spectrometry (scpMS) approaches currently offer the highest throughput as measured by cells analyzed per day. These methods employ isobaric labels and typically a carrier proteome - a sample added at 20-500x the single cell level that improves peptide sampling and identification. Peptides from the carrier and single cell proteomes exist within the same precursor isotopic cluster and are co-isolated for identification and quantification. This represents a challenge as high levels of carrier proteome limit the sampling of peptide ions from single cell samples and can potentially lead to decreased accuracy of quantitative measurements. Here, we address this limitation by introducing a triggered by offset mass acquisition method for scpMS (toma-scpMS) that utilizes a carrier proteome labeled with non-isobaric tags that have the same chemical composition but different mass as the labels used for quantitative multiplexing. Within toma-scpMS the carrier proteome and single cell proteome are separated at the precursor level, enabling separate isolation, fragmentation, and quantitation of the single cell samples. To enable this workflow we implemented a custom data acquisition scheme within inSeqAPI, an instrument application programming interface program that performed real-time identification of carrier proteome peptides and subsequent triggering of offset single cell quantification scans. We demonstrate that toma-scpMS is more robust to high-levels of carrier proteome and offers superior quantitative accuracy as compared to traditional multiplexed scpMS approaches when similar carrier proteome levels are employed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信