Zakaria Belkacemi, Liesjet E H van Dokkum, Andon Tchechmedjiev, Matthieu Lepetit-Coiffe, Denis Mottet, Emmanuelle Le Bars
{"title":"运动捕捉能否改善基于任务的脑卒中后运动功能 fMRI 研究?系统综述。","authors":"Zakaria Belkacemi, Liesjet E H van Dokkum, Andon Tchechmedjiev, Matthieu Lepetit-Coiffe, Denis Mottet, Emmanuelle Le Bars","doi":"10.1186/s12984-025-01611-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Variability in motor recovery after stroke represents a major challenge in its understanding and management. While functional MRI has been used to unravel interactions between stroke motor function and clinical outcome, fMRI alone cannot clarify any relation between brain activation and movement characteristics.</p><p><strong>Objectives: </strong>We aimed to identify fMRI and kinematic coupling approaches and to evaluate their potential contribution to the understanding of motor function post-stroke.</p><p><strong>Method: </strong>A systematic literature review was performed according to PRISMA guidelines on studies using fMRI and kinematics in post-stroke individuals. We assessed the internal, external, statistical, and technological validity of each study. Data extraction included study design and analysis procedures used to couple brain activity with movement characteristics.</p><p><strong>Results: </strong>Of the 404 studies found, 23 were included in the final review. The overall study quality was moderate (0.6/1). Thirteen studies used kinematic information either parallel to the fMRI results, or as a real-time input to external devices, for instance to provide feedback to the patient. Ten studies performed a statistical analysis between movement and brain activity by either using kinematics as variables during group or individual level regression or correlation. This permitted establishing links between movement characteristics and brain activity, unraveling cortico-kinematic relationships. For instance, increased activity in the ipsilesional Premotor Cortex was related to less smooth movements, whereas trunk compensation was expressed by increased activity in the contralesional Primary Motor Cortex.</p><p><strong>Conclusion: </strong>Our review suggests that the coupling of fMRI and kinematics may provide valuable insight into cortico-kinematic relationships. The optimization and standardization of both data measurement and treatment procedures may help the field to move forward and to fully use the potential of multimodal cortico-kinematic integration to unravel the complexity of post-stroke motor function and recovery.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"70"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Can motion capture improve task-based fMRI studies of motor function post-stroke? A systematic review.\",\"authors\":\"Zakaria Belkacemi, Liesjet E H van Dokkum, Andon Tchechmedjiev, Matthieu Lepetit-Coiffe, Denis Mottet, Emmanuelle Le Bars\",\"doi\":\"10.1186/s12984-025-01611-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Variability in motor recovery after stroke represents a major challenge in its understanding and management. While functional MRI has been used to unravel interactions between stroke motor function and clinical outcome, fMRI alone cannot clarify any relation between brain activation and movement characteristics.</p><p><strong>Objectives: </strong>We aimed to identify fMRI and kinematic coupling approaches and to evaluate their potential contribution to the understanding of motor function post-stroke.</p><p><strong>Method: </strong>A systematic literature review was performed according to PRISMA guidelines on studies using fMRI and kinematics in post-stroke individuals. We assessed the internal, external, statistical, and technological validity of each study. Data extraction included study design and analysis procedures used to couple brain activity with movement characteristics.</p><p><strong>Results: </strong>Of the 404 studies found, 23 were included in the final review. The overall study quality was moderate (0.6/1). Thirteen studies used kinematic information either parallel to the fMRI results, or as a real-time input to external devices, for instance to provide feedback to the patient. Ten studies performed a statistical analysis between movement and brain activity by either using kinematics as variables during group or individual level regression or correlation. This permitted establishing links between movement characteristics and brain activity, unraveling cortico-kinematic relationships. For instance, increased activity in the ipsilesional Premotor Cortex was related to less smooth movements, whereas trunk compensation was expressed by increased activity in the contralesional Primary Motor Cortex.</p><p><strong>Conclusion: </strong>Our review suggests that the coupling of fMRI and kinematics may provide valuable insight into cortico-kinematic relationships. The optimization and standardization of both data measurement and treatment procedures may help the field to move forward and to fully use the potential of multimodal cortico-kinematic integration to unravel the complexity of post-stroke motor function and recovery.</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":\"22 1\",\"pages\":\"70\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-025-01611-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01611-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Can motion capture improve task-based fMRI studies of motor function post-stroke? A systematic review.
Background: Variability in motor recovery after stroke represents a major challenge in its understanding and management. While functional MRI has been used to unravel interactions between stroke motor function and clinical outcome, fMRI alone cannot clarify any relation between brain activation and movement characteristics.
Objectives: We aimed to identify fMRI and kinematic coupling approaches and to evaluate their potential contribution to the understanding of motor function post-stroke.
Method: A systematic literature review was performed according to PRISMA guidelines on studies using fMRI and kinematics in post-stroke individuals. We assessed the internal, external, statistical, and technological validity of each study. Data extraction included study design and analysis procedures used to couple brain activity with movement characteristics.
Results: Of the 404 studies found, 23 were included in the final review. The overall study quality was moderate (0.6/1). Thirteen studies used kinematic information either parallel to the fMRI results, or as a real-time input to external devices, for instance to provide feedback to the patient. Ten studies performed a statistical analysis between movement and brain activity by either using kinematics as variables during group or individual level regression or correlation. This permitted establishing links between movement characteristics and brain activity, unraveling cortico-kinematic relationships. For instance, increased activity in the ipsilesional Premotor Cortex was related to less smooth movements, whereas trunk compensation was expressed by increased activity in the contralesional Primary Motor Cortex.
Conclusion: Our review suggests that the coupling of fMRI and kinematics may provide valuable insight into cortico-kinematic relationships. The optimization and standardization of both data measurement and treatment procedures may help the field to move forward and to fully use the potential of multimodal cortico-kinematic integration to unravel the complexity of post-stroke motor function and recovery.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.