SARS-CoV-2 主蛋白酶耐药性和补偿的分子机制:E166 和 L50 之间的相互作用。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-04-04 DOI:10.1128/mbio.04068-24
Sarah N Zvornicanin, Ala M Shaqra, Julia Flynn, Heidi Carias Martinez, Weiping Jia, Stephanie Moquin, Dustin Dovala, Daniel N Bolon, Nese Kurt Yilmaz, Celia A Schiffer
{"title":"SARS-CoV-2 主蛋白酶耐药性和补偿的分子机制:E166 和 L50 之间的相互作用。","authors":"Sarah N Zvornicanin, Ala M Shaqra, Julia Flynn, Heidi Carias Martinez, Weiping Jia, Stephanie Moquin, Dustin Dovala, Daniel N Bolon, Nese Kurt Yilmaz, Celia A Schiffer","doi":"10.1128/mbio.04068-24","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 main protease (M<sup>pro</sup>) is essential for viral replication and is a primary target for COVID-19 antivirals. Direct-acting antivirals such as nirmatrelvir, the active component of Paxlovid, target the M<sup>pro</sup> active site to block viral polyprotein cleavage and thus replication. However, drug resistance mutations at the active site residue Glu166 (E166) have emerged during <i>in vitro</i> selection studies, raising concerns about the durability of current antiviral strategies. Here, we investigate the molecular basis of drug resistance conferred by E166A and E166V mutations against nirmatrelvir and the related PF-00835231, individually and in combination with the distal mutation L50F. We found that E166 mutations reduce nirmatrelvir potency by up to 3,000-fold while preserving substrate cleavage, with catalytic efficiency reduced by only up to twofold. This loss of catalytic efficiency was compensated for by the addition of L50F in the double-mutant variants. We have determined three cocrystal structures of the E166 variants (E166A, E166V, and E166V/L50F) bound to PF-00835231. Comparison of these structures with wild-type enzyme demonstrated that E166 is crucial for dimerization and for shaping the substrate-binding S1 pocket. Our findings highlight the mutability of E166, a prime site for resistance for inhibitors that leverage direct interactions with this position, and the potential emergence of highly resistant and active variants in combination with the compensatory mutation L50F. These insights support the design of inhibitors that target conserved protease features and avoid E166 side-chain interactions to minimize susceptibility to resistance.</p><p><strong>Importance: </strong>Drug resistance remains a great challenge to modern medicine. This study investigates SARS-CoV-2 main protease variants E166A and E166V which confer nirmatrelvir resistance. These variants can retain considerable enzymatic activity through combination with the compensatory mutation L50F. For single- and double-mutant variant enzymes, we assessed catalytic efficiency, measured loss in potency for nirmatrelvir and its analog PF-00835231, and cocrystallized with inhibitors to investigate drug resistance caused by these mutations. Our results contribute toward understanding of molecular mechanisms of resistance and combinations of mutations, which pushes toward resistance-thwarting inhibitor design. These principles also apply broadly to many quickly evolving drug targets in infectious diseases.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0406824"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms of drug resistance and compensation in SARS-CoV-2 main protease: the interplay between E166 and L50.\",\"authors\":\"Sarah N Zvornicanin, Ala M Shaqra, Julia Flynn, Heidi Carias Martinez, Weiping Jia, Stephanie Moquin, Dustin Dovala, Daniel N Bolon, Nese Kurt Yilmaz, Celia A Schiffer\",\"doi\":\"10.1128/mbio.04068-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SARS-CoV-2 main protease (M<sup>pro</sup>) is essential for viral replication and is a primary target for COVID-19 antivirals. Direct-acting antivirals such as nirmatrelvir, the active component of Paxlovid, target the M<sup>pro</sup> active site to block viral polyprotein cleavage and thus replication. However, drug resistance mutations at the active site residue Glu166 (E166) have emerged during <i>in vitro</i> selection studies, raising concerns about the durability of current antiviral strategies. Here, we investigate the molecular basis of drug resistance conferred by E166A and E166V mutations against nirmatrelvir and the related PF-00835231, individually and in combination with the distal mutation L50F. We found that E166 mutations reduce nirmatrelvir potency by up to 3,000-fold while preserving substrate cleavage, with catalytic efficiency reduced by only up to twofold. This loss of catalytic efficiency was compensated for by the addition of L50F in the double-mutant variants. We have determined three cocrystal structures of the E166 variants (E166A, E166V, and E166V/L50F) bound to PF-00835231. Comparison of these structures with wild-type enzyme demonstrated that E166 is crucial for dimerization and for shaping the substrate-binding S1 pocket. Our findings highlight the mutability of E166, a prime site for resistance for inhibitors that leverage direct interactions with this position, and the potential emergence of highly resistant and active variants in combination with the compensatory mutation L50F. These insights support the design of inhibitors that target conserved protease features and avoid E166 side-chain interactions to minimize susceptibility to resistance.</p><p><strong>Importance: </strong>Drug resistance remains a great challenge to modern medicine. This study investigates SARS-CoV-2 main protease variants E166A and E166V which confer nirmatrelvir resistance. These variants can retain considerable enzymatic activity through combination with the compensatory mutation L50F. For single- and double-mutant variant enzymes, we assessed catalytic efficiency, measured loss in potency for nirmatrelvir and its analog PF-00835231, and cocrystallized with inhibitors to investigate drug resistance caused by these mutations. Our results contribute toward understanding of molecular mechanisms of resistance and combinations of mutations, which pushes toward resistance-thwarting inhibitor design. These principles also apply broadly to many quickly evolving drug targets in infectious diseases.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0406824\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.04068-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.04068-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular mechanisms of drug resistance and compensation in SARS-CoV-2 main protease: the interplay between E166 and L50.

The SARS-CoV-2 main protease (Mpro) is essential for viral replication and is a primary target for COVID-19 antivirals. Direct-acting antivirals such as nirmatrelvir, the active component of Paxlovid, target the Mpro active site to block viral polyprotein cleavage and thus replication. However, drug resistance mutations at the active site residue Glu166 (E166) have emerged during in vitro selection studies, raising concerns about the durability of current antiviral strategies. Here, we investigate the molecular basis of drug resistance conferred by E166A and E166V mutations against nirmatrelvir and the related PF-00835231, individually and in combination with the distal mutation L50F. We found that E166 mutations reduce nirmatrelvir potency by up to 3,000-fold while preserving substrate cleavage, with catalytic efficiency reduced by only up to twofold. This loss of catalytic efficiency was compensated for by the addition of L50F in the double-mutant variants. We have determined three cocrystal structures of the E166 variants (E166A, E166V, and E166V/L50F) bound to PF-00835231. Comparison of these structures with wild-type enzyme demonstrated that E166 is crucial for dimerization and for shaping the substrate-binding S1 pocket. Our findings highlight the mutability of E166, a prime site for resistance for inhibitors that leverage direct interactions with this position, and the potential emergence of highly resistant and active variants in combination with the compensatory mutation L50F. These insights support the design of inhibitors that target conserved protease features and avoid E166 side-chain interactions to minimize susceptibility to resistance.

Importance: Drug resistance remains a great challenge to modern medicine. This study investigates SARS-CoV-2 main protease variants E166A and E166V which confer nirmatrelvir resistance. These variants can retain considerable enzymatic activity through combination with the compensatory mutation L50F. For single- and double-mutant variant enzymes, we assessed catalytic efficiency, measured loss in potency for nirmatrelvir and its analog PF-00835231, and cocrystallized with inhibitors to investigate drug resistance caused by these mutations. Our results contribute toward understanding of molecular mechanisms of resistance and combinations of mutations, which pushes toward resistance-thwarting inhibitor design. These principles also apply broadly to many quickly evolving drug targets in infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信