穿心莲内酯作为糖尿病肾病的多靶点治疗剂:STAT3/PI3K/Akt通路调节的见解

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Yuan Yin, Jing He, Yu Fang, Min Wei, Wang Zhang
{"title":"穿心莲内酯作为糖尿病肾病的多靶点治疗剂:STAT3/PI3K/Akt通路调节的见解","authors":"Yuan Yin, Jing He, Yu Fang, Min Wei, Wang Zhang","doi":"10.4062/biomolther.2024.209","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and <i>in vivo</i>/<i>in vitro</i> experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. <i>In vivo</i>, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. <i>In vitro</i> studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD's multi-target mechanism, directly addressing DN's core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation.\",\"authors\":\"Yuan Yin, Jing He, Yu Fang, Min Wei, Wang Zhang\",\"doi\":\"10.4062/biomolther.2024.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and <i>in vivo</i>/<i>in vitro</i> experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. <i>In vivo</i>, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. <i>In vitro</i> studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD's multi-target mechanism, directly addressing DN's core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.209\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.209","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病肾病(DN)仍然是终末期肾病(ESRD)的主要原因,由慢性炎症、氧化应激和细胞凋亡驱动。目前针对血糖和血压控制的治疗方法未能解决DN的潜在分子机制。本研究探讨穿心莲内酯(AD),一种从穿心莲中提取的二萜内酯,通过调节关键的分子通路来减轻DN的治疗潜力。通过综合网络药理学、分子对接和体内/体外实验,共鉴定出107个重叠的dn相关靶点,其中STAT3、PI3K和AKT1为核心节点。分子对接揭示了AD与这些靶点之间的高结合亲和力,支持其调节潜力。在体内,AD显著改善链脲佐菌素诱导的DN大鼠的肾功能,减少蛋白尿、肾小球肥大和肾纤维化。AD还能减轻氧化应激,降低促炎细胞因子水平,增强抗氧化酶活性,显示出全身抗炎和抗氧化作用。体外研究进一步证实,AD通过抑制RAGE-NF-κB和STAT3/PI3K/Akt通路,缓解高糖条件下足细胞氧化应激和凋亡。组织学分析显示肾脏结构有实质性改善,包括纤维化和肾系膜扩张的减少。这些结果强调了AD的多靶点机制,直接解决了DN的核心病理驱动因素,包括炎症、氧化应激和细胞凋亡。作为一种安全性和有效性显著的天然化合物,AD有望作为DN的辅助或独立治疗剂。本研究为AD的临床前研究奠定了坚实的基础,值得进一步的临床试验探索,以及在其他糖尿病并发症中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation.

Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD's multi-target mechanism, directly addressing DN's core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信