Bianca Lascaris, Linda C Woltjes, Silke B Bodewes, Robert J Porte, Vincent E de Meijer, Maarten W N Nijsten
{"title":"人肝在长期常温机器灌注过程中的代谢平衡。","authors":"Bianca Lascaris, Linda C Woltjes, Silke B Bodewes, Robert J Porte, Vincent E de Meijer, Maarten W N Nijsten","doi":"10.1152/ajpgi.00404.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Normothermic machine perfusion (NMP) is used to preserve and assess the viability of (extended criteria) high-risk donor livers. Long-term NMP (LT-NMP; ≥24 h) is emerging as a method to improve or repair livers initially deemed unsuitable for transplantation. This study investigated metabolism during LT-NMP, focusing on hepatic energy consumption and nitrogen and electrolyte balances to better understand long-term perfusion requirements. In this study, we measured oxygen consumption (V̇o<sub>2</sub>) and carbon dioxide production (V̇co<sub>2</sub>) to determine the energy expenditure of 14 human livers during LT-NMP for 7 days. In addition, hepatic balances of glucose and lactate as well as of nitrogen and electrolytes were determined. Initial high metabolic rates during the first day of LT-NMP decreased and stabilized at nearly 50% on <i>day 3</i>, suggesting a quiescent state until <i>day 7</i>. Most energy was derived from glucose (75%-88%). Continuous amino acid supplementation was essential to maintain an anabolic state, whereas livers without supplementation became catabolic. Although net electrolyte balances were close to zero, significant uptake and release of electrolytes occurred throughout LT-NMP. During LT-NMP, livers reached a metabolically quiescent state after 3 days with decreased energy consumption. Tailoring perfusate composition and supplementation protocols to the specific needs of the liver could enhance organ preservation and potentially expand the pool of viable donor livers after LT-NMP.<b>NEW & NOTEWORTHY</b> A long-term normothermic machine perfusion platform is being developed for repairing and regenerating damaged livers to make them suitable for transplantation. The energy expenditure and the metabolic needs of 14 human donor livers were observed during NMP for up to a week. We noticed that livers become metabolically quiescent after 3 days and that a change in our nutrimental support protocol might be necessary to provide a better environment for the livers during NMP.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G522-G532"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic balance of human livers during long-term normothermic machine perfusion.\",\"authors\":\"Bianca Lascaris, Linda C Woltjes, Silke B Bodewes, Robert J Porte, Vincent E de Meijer, Maarten W N Nijsten\",\"doi\":\"10.1152/ajpgi.00404.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Normothermic machine perfusion (NMP) is used to preserve and assess the viability of (extended criteria) high-risk donor livers. Long-term NMP (LT-NMP; ≥24 h) is emerging as a method to improve or repair livers initially deemed unsuitable for transplantation. This study investigated metabolism during LT-NMP, focusing on hepatic energy consumption and nitrogen and electrolyte balances to better understand long-term perfusion requirements. In this study, we measured oxygen consumption (V̇o<sub>2</sub>) and carbon dioxide production (V̇co<sub>2</sub>) to determine the energy expenditure of 14 human livers during LT-NMP for 7 days. In addition, hepatic balances of glucose and lactate as well as of nitrogen and electrolytes were determined. Initial high metabolic rates during the first day of LT-NMP decreased and stabilized at nearly 50% on <i>day 3</i>, suggesting a quiescent state until <i>day 7</i>. Most energy was derived from glucose (75%-88%). Continuous amino acid supplementation was essential to maintain an anabolic state, whereas livers without supplementation became catabolic. Although net electrolyte balances were close to zero, significant uptake and release of electrolytes occurred throughout LT-NMP. During LT-NMP, livers reached a metabolically quiescent state after 3 days with decreased energy consumption. Tailoring perfusate composition and supplementation protocols to the specific needs of the liver could enhance organ preservation and potentially expand the pool of viable donor livers after LT-NMP.<b>NEW & NOTEWORTHY</b> A long-term normothermic machine perfusion platform is being developed for repairing and regenerating damaged livers to make them suitable for transplantation. The energy expenditure and the metabolic needs of 14 human donor livers were observed during NMP for up to a week. We noticed that livers become metabolically quiescent after 3 days and that a change in our nutrimental support protocol might be necessary to provide a better environment for the livers during NMP.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G522-G532\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00404.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00404.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Metabolic balance of human livers during long-term normothermic machine perfusion.
Normothermic machine perfusion (NMP) is used to preserve and assess the viability of (extended criteria) high-risk donor livers. Long-term NMP (LT-NMP; ≥24 h) is emerging as a method to improve or repair livers initially deemed unsuitable for transplantation. This study investigated metabolism during LT-NMP, focusing on hepatic energy consumption and nitrogen and electrolyte balances to better understand long-term perfusion requirements. In this study, we measured oxygen consumption (V̇o2) and carbon dioxide production (V̇co2) to determine the energy expenditure of 14 human livers during LT-NMP for 7 days. In addition, hepatic balances of glucose and lactate as well as of nitrogen and electrolytes were determined. Initial high metabolic rates during the first day of LT-NMP decreased and stabilized at nearly 50% on day 3, suggesting a quiescent state until day 7. Most energy was derived from glucose (75%-88%). Continuous amino acid supplementation was essential to maintain an anabolic state, whereas livers without supplementation became catabolic. Although net electrolyte balances were close to zero, significant uptake and release of electrolytes occurred throughout LT-NMP. During LT-NMP, livers reached a metabolically quiescent state after 3 days with decreased energy consumption. Tailoring perfusate composition and supplementation protocols to the specific needs of the liver could enhance organ preservation and potentially expand the pool of viable donor livers after LT-NMP.NEW & NOTEWORTHY A long-term normothermic machine perfusion platform is being developed for repairing and regenerating damaged livers to make them suitable for transplantation. The energy expenditure and the metabolic needs of 14 human donor livers were observed during NMP for up to a week. We noticed that livers become metabolically quiescent after 3 days and that a change in our nutrimental support protocol might be necessary to provide a better environment for the livers during NMP.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.