IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yixuan Ma, Xiaopeng Zhou, Jiapeng Wu, Zhijie Dong, Lizhi Cui, Yuhua Wang, Andries Meijerink
{"title":"Luminescence Thermometry via Multiparameter Sensing in YV<sub>1-<i>x</i></sub>P<i><sub><i>x</i></sub></i>O<sub>4</sub>:Eu<sup>3+</sup>, Er<sup>3</sup>.","authors":"Yixuan Ma, Xiaopeng Zhou, Jiapeng Wu, Zhijie Dong, Lizhi Cui, Yuhua Wang, Andries Meijerink","doi":"10.1021/jacs.5c02306","DOIUrl":null,"url":null,"abstract":"<p><p>Luminescence thermometry is a remote temperature sensing technique that utilizes temperature-dependent luminescence properties. Lanthanide-doped materials with two thermally coupled emitting levels displaying a variation in luminescence intensity ratio (LIR) with temperature have been successfully explored to design sensitive luminescent thermometers. However, the low absorption strength of lanthanide parity-forbidden 4f<sup><i>n</i></sup> → 4f<sup><i>n</i></sup> transitions reduces the brightness. Also, this Boltzmann-type thermometer is only sensitive within a limited temperature range. To address these issues, we report here YV<sub>1-<i>x</i></sub>P<i><sub><i>x</i></sub></i>O<sub>4</sub>:Eu<sup>3+</sup>, Er<sup>3+</sup> as a luminescent thermometer. This material utilizes the sensitized emission of Ln<sup>3+</sup> by strong and broad vanadate charge transfer absorption and has a wide and tunable optimum temperature range by controlling the thermal quenching of Eu<sup>3+</sup> emission through a variation of <i>x</i>. The new temperature probe offers a single material with multiple temperature-dependent luminescence properties, viz. the LIR of <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> emission of Er<sup>3+</sup>, the LIR of the integrated Er<sup>3+</sup> and Eu<sup>3+</sup> emission intensities, and the Eu<sup>3+</sup> emission lifetime. Both micro- and nanocrystalline temperature probes are reported to achieve relative sensitivities (<i>S</i><sub>r</sub>) from ∼0.5%/K to over 5%/K in a wide temperature range of 300-873 K. To demonstrate practical applicability, the luminescent thermometer was applied to in situ chip temperature detection revealing temperature accuracies better than 1 K.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c02306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

发光测温是一种利用随温度变化的发光特性进行远程温度感应的技术。掺杂镧系元素的材料具有两个热耦合发射级,发光强度比(LIR)随温度变化,这种材料已被成功地用于设计灵敏的发光温度计。然而,镧系元素奇偶禁止的 4fn → 4fn 转换的低吸收强度降低了亮度。此外,这种玻尔兹曼型温度计只能在有限的温度范围内保持灵敏度。为了解决这些问题,我们在此报告了 YV1-xPxO4:Eu3+, Er3+ 作为一种发光温度计。这种新型温度探针提供了一种具有多种随温度变化的发光特性的单一材料,即 Er3+ 的 2H11/2/4S3/2 发射的 LIR、Er3+ 和 Eu3+ 的综合发射强度的 LIR 以及 Eu3+ 的发射寿命。据报道,在 300-873 K 的宽温度范围内,微晶和纳米晶温度探针的相对灵敏度 (Sr) 从 0.5%/K 到超过 5%/K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Luminescence Thermometry via Multiparameter Sensing in YV<sub>1-<i>x</i></sub>P<i><sub><i>x</i></sub></i>O<sub>4</sub>:Eu<sup>3+</sup>, Er<sup>3</sup>.

Luminescence Thermometry via Multiparameter Sensing in YV1-xPxO4:Eu3+, Er3.

Luminescence thermometry is a remote temperature sensing technique that utilizes temperature-dependent luminescence properties. Lanthanide-doped materials with two thermally coupled emitting levels displaying a variation in luminescence intensity ratio (LIR) with temperature have been successfully explored to design sensitive luminescent thermometers. However, the low absorption strength of lanthanide parity-forbidden 4fn → 4fn transitions reduces the brightness. Also, this Boltzmann-type thermometer is only sensitive within a limited temperature range. To address these issues, we report here YV1-xPxO4:Eu3+, Er3+ as a luminescent thermometer. This material utilizes the sensitized emission of Ln3+ by strong and broad vanadate charge transfer absorption and has a wide and tunable optimum temperature range by controlling the thermal quenching of Eu3+ emission through a variation of x. The new temperature probe offers a single material with multiple temperature-dependent luminescence properties, viz. the LIR of 2H11/2/4S3/2 emission of Er3+, the LIR of the integrated Er3+ and Eu3+ emission intensities, and the Eu3+ emission lifetime. Both micro- and nanocrystalline temperature probes are reported to achieve relative sensitivities (Sr) from ∼0.5%/K to over 5%/K in a wide temperature range of 300-873 K. To demonstrate practical applicability, the luminescent thermometer was applied to in situ chip temperature detection revealing temperature accuracies better than 1 K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信