{"title":"用于卵巢癌特异性靶向治疗的适体修饰的gsh可降解的厚朴酚聚前药纳米颗粒。","authors":"Chunhua Guo, Xiaowei Cheng, Yuxing Yang, Lijuan Wang, Wenfang Wang, Liping Shao","doi":"10.1016/j.bmcl.2025.130215","DOIUrl":null,"url":null,"abstract":"<div><div>Honokiol (HK) is a polyphenol isolated from the Magnolia genus, a component of traditional Chinese herbal medicine, which can effectively suppress the growth of various tumors, including ovarian cancer. However, its low water solubility and lack of tumor-targeting ability have greatly hindered the clinical application of HK. Herein, a glutathione (GSH)-sensitive HK polyprodrug was prepared using HK as the backbone. An EpCAM-specific aptamer and poly(ethylene glycol) (PEG) were then conjugated to the HK polyprodrug, and the resulting polyprodrug was assembled into nanoparticles (NPs) in water. The HK polyprodrug-formed NPs achieved high drug loading and GSH-responsive drug release. Moreover, after optimization, HK polyprodrug NPs (A/P-PHK NP40), formed by aptamer-modified and PEG-modified prodrug at a feed molar ratio of 2: 3, exhibited the highest ability to target EpCAM-overexpressing ovarian cancer cells. A/P-PHK NP40 also demonstrated a greater cell growth inhibition effect in ovarian cancer cells compared to free HK and control HK NPs. All in all, this work reported a novel strategy for HK delivery based on microenvironment responsiveness polyprodrug, which provided a potential method for ovarian cancer targeting therapy.</div></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"123 ","pages":"Article 130215"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aptamer-modified GSH-degradable honokiol polyprodrug nanoparticles for ovarian cancer-specific targeting therapy\",\"authors\":\"Chunhua Guo, Xiaowei Cheng, Yuxing Yang, Lijuan Wang, Wenfang Wang, Liping Shao\",\"doi\":\"10.1016/j.bmcl.2025.130215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Honokiol (HK) is a polyphenol isolated from the Magnolia genus, a component of traditional Chinese herbal medicine, which can effectively suppress the growth of various tumors, including ovarian cancer. However, its low water solubility and lack of tumor-targeting ability have greatly hindered the clinical application of HK. Herein, a glutathione (GSH)-sensitive HK polyprodrug was prepared using HK as the backbone. An EpCAM-specific aptamer and poly(ethylene glycol) (PEG) were then conjugated to the HK polyprodrug, and the resulting polyprodrug was assembled into nanoparticles (NPs) in water. The HK polyprodrug-formed NPs achieved high drug loading and GSH-responsive drug release. Moreover, after optimization, HK polyprodrug NPs (A/P-PHK NP40), formed by aptamer-modified and PEG-modified prodrug at a feed molar ratio of 2: 3, exhibited the highest ability to target EpCAM-overexpressing ovarian cancer cells. A/P-PHK NP40 also demonstrated a greater cell growth inhibition effect in ovarian cancer cells compared to free HK and control HK NPs. All in all, this work reported a novel strategy for HK delivery based on microenvironment responsiveness polyprodrug, which provided a potential method for ovarian cancer targeting therapy.</div></div>\",\"PeriodicalId\":256,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry Letters\",\"volume\":\"123 \",\"pages\":\"Article 130215\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960894X25001246\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X25001246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Aptamer-modified GSH-degradable honokiol polyprodrug nanoparticles for ovarian cancer-specific targeting therapy
Honokiol (HK) is a polyphenol isolated from the Magnolia genus, a component of traditional Chinese herbal medicine, which can effectively suppress the growth of various tumors, including ovarian cancer. However, its low water solubility and lack of tumor-targeting ability have greatly hindered the clinical application of HK. Herein, a glutathione (GSH)-sensitive HK polyprodrug was prepared using HK as the backbone. An EpCAM-specific aptamer and poly(ethylene glycol) (PEG) were then conjugated to the HK polyprodrug, and the resulting polyprodrug was assembled into nanoparticles (NPs) in water. The HK polyprodrug-formed NPs achieved high drug loading and GSH-responsive drug release. Moreover, after optimization, HK polyprodrug NPs (A/P-PHK NP40), formed by aptamer-modified and PEG-modified prodrug at a feed molar ratio of 2: 3, exhibited the highest ability to target EpCAM-overexpressing ovarian cancer cells. A/P-PHK NP40 also demonstrated a greater cell growth inhibition effect in ovarian cancer cells compared to free HK and control HK NPs. All in all, this work reported a novel strategy for HK delivery based on microenvironment responsiveness polyprodrug, which provided a potential method for ovarian cancer targeting therapy.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.